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Taxon-specific detailed description of data sources and 

procedures for estimating biomass 

Overview 

Here we provide a detailed description of the data and procedures for arriving at the final 

estimates presented in the paper. The description is divided into the different groups of 

organisms. For some organisms, there is further division into the different environments they 

reside in. We used bold font to highlight the concluding values derived for each taxonomic 

group. All of the data used to generate our estimates, along with the code for analyzing the data, 

are open-source and available at https://github.com/milo-lab/biomass_distribution. 

 

The SI Appendix and all the accompanying files are made accessible so that researchers can see in 

a completely transparent manner how each value was derived from the many literature sources 

and be able to update the analysis using extra data or a different data analysis approach. We rely 

on hundreds of studies from the literature to support the data presented in the SI Appendix. To 

generate our estimates of biomass, we extract values from the literature into spreadsheet files.  

Our analysis pipeline is comprised of about 50 different Jupyter notebooks which use the data 

extracted from the literature as input and generate our estimates. The result of our analysis is 

summarized in a summary table located at https://github.com/milo-lab/biomass_distribution. We 

use the results of our analysis when reporting the values in the manuscript and SI Appendix, 

including all the associated figures and tables. 

 

 

  

https://github.com/milo-lab/biomass_distribution
https://github.com/milo-lab/biomass_distribution
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Plants 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Biomass 

There are several estimates for the biomass of specific components of plant biomass, mainly 

forests, and they are based on both direct field observations (termed inventory data; 1, 2) and on 

remote-sensing data (3–5). These studies, however, have mainly focused on forests, and have not 

quantified the contribution of other components of the global plant biomass, such as shrubs, 

grasses, or locations with trees not defined as forests (because of an average tree cover of less 

than 10%). Alternatively, well-established studies (6–8) provide estimates for the carbon density 

and extent in plants for all biomes, which takes into account also biomes that are not dominated 

by trees (such as grasslands, shrublands, and savannas). These studies, however, provide 

estimates for the biomass density of plants in undisturbed ecosystems, and do not take into 

account the very broad land-use changes which have affected many natural ecosystems. These 

changes include transformation of natural ecosystems to cropland, as well as the impact of 

forestry and grazing on natural ecosystems. This is one of the reasons that the global estimates for 

forest biomass in Saugier et al. or Ajtay et al. diverge from more recent inventory-based or 

remote-sensing-based estimates (1–5). The best resource we were able to find as a basis for our 

estimate of the global biomass of plants is Erb et al. (9). Their study assesses the biomass of both 

forest and non-forest ecosystems and takes into account impacts of land-use changes. We briefly 

describe the methodology Erb et al. used for estimating the global biomass of plants, for full 

details we refer the reader to the original paper (9). Erb et al. generated seven maps of plant 

biomass stocks. Their best estimate for the global biomass of plants is based on the mean of those 

seven different maps. The first six maps could be divided to two broad categories: two inventory-

based maps, and four remote sensing-based maps. We now describe those estimates in more 

detail. 

For the inventory-based maps, Erb et al. consider five main land cover categories: forests, 

cropland, artificial grassland (forest area converted to pastures or meadows), other wooded land 

(5-10% tree cover, including savannas and shrubland) and natural grasslands (<5% tree cover). 

To each land-use unit, Erb et al. assign typical biomass stock density values from the literature or 

census statistics. In the first map, Erb et al. use national-level data from the global Forest 

Resource Assessment for the forest land-cover. The second map uses data on forest inventories 

from Pan et al. (1). Erb et al. set the biomass density of grassland-tree mosaics (other wooded 

land and natural grasslands which contain trees), at 50% of the biomass density of the 

neighboring forests (forests which are in the same country as the grassland-tree mosaics). Erb et 

al. based this assumption on data from the FRA on the ratio between other wooded land biomass 

and forest biomass in ≈70 countries (10). For herbaceous vegetation units (artificial grassland, 

cropland and natural grassland without trees), Erb et al. assumed biomass stocks to equal the 

annual amount of net primary production. For permanent cropland, Erb et al. added 3 kg C m-2 for 

tree-bearing systems and 1.5 kg C m-2 for shrub bearing systems to account for woody above- and 

belowground compartments.  

https://github.com/milo-lab/biomass_distribution/tree/master/plants
https://paperpile.com/c/C72ZXm/wR9M+cGvu
https://paperpile.com/c/C72ZXm/FuFrX+KPz8a+ioNX3
https://paperpile.com/c/C72ZXm/DkON+QHAQ+kTLd
https://paperpile.com/c/C72ZXm/wR9M+cGvu+FuFrX+KPz8a+ioNX3
https://paperpile.com/c/C72ZXm/3GS6
https://paperpile.com/c/C72ZXm/3GS6
https://paperpile.com/c/C72ZXm/wR9M
https://paperpile.com/c/C72ZXm/25dn
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For the remote sensing-based maps, Erb et al. combined independent remote-sensing products for 

tree vegetation and expanded them to account for below-ground and herbaceous compartments 

where necessary. The main data sources used for the construction of the maps are Thurner et al. 

(5) for the northern boreal and temperate forests, and Baccini et al. and Saatchi et al. for tropical 

forests (3, 4). For some regions (the southernmost part of Australia, and parts of Oceania), no 

remote-sensing data are available. In these regions, Erb et al. used the inventory-based map to fill 

missing values. The first two remote-sensing maps use either Saatchi et al. or Baccini et al. for the 

tropical forest component of the map. The additional two remote sensing-based maps use 

the minimal or maximal biomass densities at each grid cell of the map, respectively. The last map 

Erb et al. use is the map constructed by Ruesch & Gibbs based on the IPCC tier-1 globally 

consistent default biomass values (8). To estimate the total biomass of plants from those seven 

different estimates, we use the best estimate reported by Erb et al., which is ≈450 Gt C (link to 

full calculation). 

 

The analysis of Erb et al. does not include halophytic flowering plants (plants living in water with 

high salinity) and bryophytes (liverworts, hornworts and mosses). Biomass of halophytic 

flowering plants is dominated by mangroves and seagrass. An estimate for the total biomass of 

mangroves is roughly ≈4 Gt C (11). This value is consistent with estimates for the global storage 

of organic carbon in mangroves, and the fraction of this carbon that is living mangroves (and not 

dead biomass or soil organic carbon; 12). For seagrass, Fourqurean et al. (13), estimate a global 

biomass of ≈0.1 Gt C. As for bryophytes, there seems to be no global data on bryophytes alone, 

but Elbert et al. (14) give values of ≈5 Gt C for ‘cryptogamic covers’, i.e. varying mixtures of 

bryophytes, lichens, eukaryotic algae, cyanobacteria and fungi growing as epiphytes, as crusts on 

arid lands, and in bogs. This translates into an organic C content of about 1% of the total for 

terrestrial plants. Supporting these general values, Edwards et al. (15) analyzed the global carbon 

content of ‘cryptogamic covers’ in the Ordovician-Silurian period (about 400-500 million years 

ago) and suggested it was similar to today’s values, i.e. a total of about ≈5 Gt C. For the sum of 

marine macroalgae (green and brown algae), De Vooys (16) gives a total global biomass of of 

0.0075 Gt C, based on annual productivity and assuming one turnover of the standing crop each 

year. Cherpy-Roubaud & Sournia (17) cite global annual productivity of all taxa of marine 

macroalgae of 2.55 Gt C yr-1, or a global standing crop of 2.55 Gt C assuming one turnover of the 

standing crop each year (18). This 2-3 orders of magnitude range of values (0.0075-2.55 Gt C) 

means that more work is needed to obtain tightly-constrained estimates.  

 

Plant biomass is dominated by land plants (embryophytes), and more specifically by vascular 

plants (tracheophytes), with only a minor contribution from bryophyte biomass (14). Overall, we 

estimate that the global plant biomass, including contributions from land plants as well as other 

groups such as bryophytes and all marine plant contributions is ≈450 Gt C.  

 

We now analyze the associated uncertainty of the estimate for the total biomass of plants. We 

report the uncertainty as a fold change factor from the mean, representing a range akin to a 95% 

confidence interval of the estimate. One approach to assess the uncertainty associated with the 

estimate of the total biomass of plants is to calculate the 95% confidence interval around the 

https://paperpile.com/c/C72ZXm/ioNX3
https://paperpile.com/c/C72ZXm/KPz8a+FuFrX
https://paperpile.com/c/C72ZXm/kTLd
https://milo-lab.github.io/biomass_distribution/plants/plants.html#Estimating-the-biomass-of-plants
https://paperpile.com/c/C72ZXm/3Bxk
https://paperpile.com/c/C72ZXm/SErs
https://paperpile.com/c/C72ZXm/aDks
https://paperpile.com/c/C72ZXm/thFo
https://paperpile.com/c/C72ZXm/SBf2
https://paperpile.com/c/C72ZXm/lkiS
https://paperpile.com/c/C72ZXm/ISmR
https://paperpile.com/c/C72ZXm/M8Ca
https://paperpile.com/c/C72ZXm/thFo
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geometric mean of the seven estimates from the seven different maps generated by Erb et al. (9). 

This yields a rather small uncertainty of ≈1.1-fold (link to full calculation). However, this 

procedure only includes uncertainty stemming from the variation between different estimates and 

does not include the systematic uncertainty stemming from assumptions made to produce each 

one of the seven estimates. The main type of uncertainty we believe is not accounted for by this 

procedure is the uncertainty in the biomass contribution from other wooded land (such as 

savannas). In the inventory-based estimates, the biomass density of other wooded land is assumed 

to be ≈50% of the national average biomass density of forests. This assumption has uncertainty 

associated with it which is not easily quantified. Similarly, the remote sensing-based estimates are 

mainly designed to quantify the biomass of forests, and therefore there is significant uncertainty 

regarding the measurement of non-forest tree and shrub plant forms by remote sensing. Providing 

a rigorous quantification of this type of uncertainty is hard. To account, even if partially, for this 

uncertainty, we use the multiplicative ratio between the upper (and lower) most estimate relative 

to our best estimate, which is ≈1.2-fold, as our best projection of the uncertainty associated with 

our estimate of the biomass of plants (link to full calculation). 

  

Biomass of roots and leaves 

Plant tissues are composed of an extracellular scaffold made out of cell wall (mainly cellulose 

and lignin), supporting a network of cytoplasmic space, termed the protoplasm. Conceptually, 

plants are not different from other organisms, which also contain supporting tissues such as endo- 

or exoskeletons, or even the extracellular matrix of microbial biofilms. The ratio between 

protoplasm and cell wall varies between plant compartments, with leaves containing the least 

amount of supporting tissues and stems of woody plants (such as trees) mainly composed of 

supporting tissues. To estimate the total biomass of non-woody tissues, we chose to remove the 

biomass of stems tissue, as it is dominated by cell wall. Roots also have a non-negligible fraction 

of cell wall biomass, but the ratio between cell wall and protoplasm in roots is harder to estimate 

globally. Therefore, to calculate the non-woody plant biomass fraction, we consider only the 

biomass of leaves and roots. In order to estimate the total biomass of roots and leaves, we rely on 

two independent methods. The first relies on a meta-analysis of the biomass allocation to 

different plant compartments across biomes (19). Using these data, we calculated the average 

biomass fraction of leaves and roots out of the total biomass to be ≈30% by taking into account 

the contribution of each biome to the global plant biomass (20; link to full calculation). This 

means that out of the 450 Gt C of plant biomass, 30%, or ≈150 Gt C is concentrated in 

metabolically active plant tissues. 

 

Our second method for estimating the non-woody plant biomass combines estimates for the 

global biomass of leaves and roots. For the global root biomass, we rely on the estimate from 

Jackson et al. (21), of ≈150 Gt C. For the global leaf biomass, we calculate the total leaf area of 

forests, which dominate plant biomass, by using a combination of biome level estimates for the 

leaf area index (LAI; 22) and the total forest area in each biome (23). We then convert the total 

area of leaves to an estimate of the total dry mass of leaves by using the Glopnet database (24), 

which measured leaf mass per area (LMA) for ≈2500 plant species. This independent procedure 

yields an estimate of ≈30 Gt dry weight, or ≈15 Gt C assuming 50% carbon content (link to full 

calculation). Summing our estimate for the total biomass of roots and leaves, we get ≈160 Gt C. 

https://paperpile.com/c/C72ZXm/3GS6
https://milo-lab.github.io/biomass_distribution/plants/plants.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/plants/plants.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/ngZu
https://paperpile.com/c/C72ZXm/yUuc
https://milo-lab.github.io/biomass_distribution/plants/non_wood_biomass/non_wood_biomass.html#Method1---fraction-of-leaves-and-roots
https://paperpile.com/c/C72ZXm/MS6d
https://paperpile.com/c/C72ZXm/Mio2
https://paperpile.com/c/C72ZXm/hzFN
https://paperpile.com/c/C72ZXm/3K6a
https://milo-lab.github.io/biomass_distribution/plants/non_wood_biomass/non_wood_biomass.html#Method2---total-biomass-of-leaves-and-roots
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We use the geometric mean of both methods, which is ≈150 Gt C, as our best estimate of the total 

non-woody plant biomass.  

 

To estimate the total belowground plant biomass, we rely on the same two methods as for the 

total non-woody biomass. We now consider only root biomass. The first method yields an 

estimate of ≈120 Gt C (link to full calculation). Our second source is the estimate of the global 

root biomass from Jackson et al. (21). We use the geometric mean of both estimates, which is 

≈130 Gt C, as our best estimate for the belowground plant biomass. This puts the aboveground 

plant biomass at ≈320 Gt C. 

 

Comparison of plant and bacterial biomass 

Our best estimates for the total biomass of plants and bacteria suggests that these taxa account for 

≈80% and ≈10% of the global biomass of the biosphere, respectively. The uncertainty associated 

with our estimate of the biomass of plants is relatively small (≈1.2-fold), and the uncertainty 

associated with our estimate of the biomass of bacteria is much larger (≈9-fold). In order to 

quantify the certainty in the statement that plants are more dominant in terms of biomass than 

bacteria, we use a bootstrapping approach. We randomly sample from the distribution of our 

estimates for the total biomass of plants and bacteria (with the width of the distribution 

corresponding to the level of our uncertainty). We find that in ≈90% of cases plant biomass is 

higher than the biomass of bacteria (link to full calculation). 

Bacteria and Archaea (Prokaryotes) 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

One of the best-known estimates of global biomass of prokaryotes (bacteria and archaea) is the 

meta-analysis study by Whitman et al. (25), which analyzed data of cell abundance densities for 

various environments and extrapolated the total prokaryotic biomass using estimates of cell mass 

in each environment. We used this study as a baseline estimate on which various corrections and 

updates were imposed for the different environments, as highlighted below. An estimate for the 

distribution of biomass between bacteria and archaea is not available currently. We generate 

estimates for the biomass of bacteria and archaea in a two-step process. First, we estimate the 

total biomass of prokaryotes in each environment, and then we estimate the fraction of bacteria 

and archaea out of the total biomass of this environment. Combining the contributions from each 

environment, we estimate that the global biomass of bacteria is ≈70 Gt C, which is dominated by 

≈60 Gt C of terrestrial deep subsurface bacteria. We estimate the global biomass of archaea at ≈7 

Gt C, with ≈4 Gt C and ≈3 Gt C contributed by the terrestrial and marine deep subsurface, 

respectively. In addition to estimating the biomass of prokaryotes in each environment, we also 

present in detail the uncertainties associated with each estimate. When combining the 

uncertainties for the biomass of bacteria and archaea in different environments we estimate the 

uncertainty of the global biomass of bacteria and archaea to be about 10-fold and 13-fold, 

respectively, dominated by the uncertainty of the biomass of terrestrial deep subsurface bacteria 

and archaea. 

https://milo-lab.github.io/biomass_distribution/plants/non_wood_biomass/non_wood_biomass.html#Method1---fraction-of-roots
https://paperpile.com/c/C72ZXm/MS6d
https://milo-lab.github.io/biomass_distribution/figures/plant_bacteria_comparison.html
https://github.com/milo-lab/biomass_distribution/tree/master/bacteria_archaea
https://paperpile.com/c/C72ZXm/BbJj
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Marine 

To generate an estimate of the biomass of marine bacteria and archaea (prokaryotes), we first 

estimate the total number of marine prokaryotes, and the characteristic carbon content of a single 

marine prokaryote. We generate our estimate for the biomass of marine prokaryotes by 

multiplying the total number of cells by the characteristic carbon content per cell. Our estimate 

for the total number of marine prokaryotes relies on three recent papers (26–28). The first is a 

review by Arístegui et al. which included a meta-analysis of values from the literature on the 

concentration of cells of pelagic prokaryotes at epipelagic (<200 m), mesopelagic (200-1000 m) 

and bathypelagic (1000-4000 m) depths. Arístegui et al. used many samples of cell density per 

volume in each depth zone to generate an average cell concentration for each depth zone. 

Arístegui et al. then generate estimates for the total number of cells per unit area for each depth 

zone by applying the average cell concentration per unit volume across the entire depth of the 

zone (≈200 m for epipelagic, ≈800 m for mesopelagic and ≈3000 m for bathypelagic). We used 

the depth integrated estimates of cell concentration per unit area for each zone in Arístegui et al. 

(29), and multiplied them by the surface area of the oceans (3.6×1014 m2) to give a total estimate 

of 1.7×1029 cells (link to full calculation). As a second source for estimating the total number of 

marine prokaryotes, we use Buitenhuis et al. (30). Buitenhuis et al. compiled a database of 39,766 

data points consisting of flow cytometric and microscopic measurements of the abundance of 

marine prokaryotes with observations covering depths even below 4 km. We binned the data 

along the water column with bins every 100 meters. We calculated the average cell 

concentrations at each depth bin and multiplied the average cell concentration by the total volume 

of water in each depth bin to generate an estimate for the total number of marine prokaryotes. We 

estimate estimate a total of ≈1.3×1029 cells based on the data from Buitenhuis et al. (link to full 

calculation). The third resource we used for estimating the total number of marine prokaryotes is 

a recent meta-analysis by Lloyd et al. (28), which gathered ≈20 studies measuring bacterial and 

archaeal abundance using fluorescent in situ hybridization (FISH). Lloyd et al. fit an equation to 

predict the concentration of bacteria and archaea based on the depth at which the sample was 

collected. We used the fits to extrapolate the number of bacteria and archaea across the entire 

depth of the water column. We then estimated the total number of bacterial and archaeal cells by 

multiplying the concentration at each depth with the total volume of water at that depth, and 

integrating across all depths. Lloyd et al. also report the fraction of cells that typically get labeled 

by the FISH signal. We used the geometric mean of this fraction, which is ≈0.8, to extend the 

estimate of total bacterial and archaeal cells labelled by FISH to an estimate for the total number 

of bacterial and archaeal cell in the ocean (link to full calculation). Based on the data from Lloyd 

et al. we estimate a total of ≈8×1028 cells. As our best guess for the total number of marine 

prokaryotes, we take the geometric mean of the estimates from Arístegui et al., Buitenhuis et al. 

and Lloyd et al., which is ≈1.2×1029 cells (link to full calculation). This number corresponds well 

with the estimate of ≈1.2×1029 cells made by Whitman et al. (25). To estimate the characteristic 

carbon content of a marine prokaryote, we rely on several studies from the literature (31–35). We 

use the geometric mean of the values reported, which is ≈11 fg C cell-1 as our best estimate for 

the carbon content of marine prokaryotes (link to full calculation). To generate our best estimate 

for the total biomass of marine prokaryotes we multiply our best estimate for the total number of 

marine prokaryotes by our best estimate for the carbon content of marine prokaryotes. We thus 

https://paperpile.com/c/C72ZXm/N35pb+XB4Tg+4wls
https://paperpile.com/c/C72ZXm/GB9M
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Estimating-the-total-number-of-marine-bacteria-and-archaea
https://paperpile.com/c/C72ZXm/oG8l
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Estimating-the-total-number-of-marine-bacteria-and-archaea
https://paperpile.com/c/C72ZXm/4wls
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Estimating-the-total-number-of-marine-bacteria-and-archaea
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Estimating-the-total-number-of-marine-bacteria-and-archaea
https://paperpile.com/c/C72ZXm/BbJj
https://paperpile.com/c/C72ZXm/Q7YQB+AHDYy+C6FEu+sWFyX+gLdfZ
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/carbon_content/marine_prok_carbon_content.html#Estimating-the-carbon-content-of-marine-bacteria-and-archaea
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arrive at a total biomass of ≈1.3 Gt C of marine prokaryotes, which is on par with the 2.2 Gt C 

estimate of Whitman.  

 

We note that these estimates referred to planktonic organisms and did not refer to prokaryotes 

attached to large particulate organic matter (POM) In general, POM can be divided into two main 

size fractions - microaggregates (5-500 µm in diameter) and macroaggregates (>500 µm in 

diameter; 36). Most of the studies on the abundance and relative contribution of particle-attached 

bacteria and archaea in the oceans are focused on a small number of sampling sites, and thus a 

robust global accounting of the contribution of particle-attached bacteria and archaea is not easily 

attainable. We proceed to make a crude estimate of the biomass contribution of bacteria and 

archaea on microaggregates and macroaggregates. For macroaggregates, we rely on studies which 

measured the relative fraction of cells attached to macroaggregates out of the total population of 

cells (37–44). We calculate the average value of those studies, and thus estimate that bacterial and 

archaeal cells attached to macroaggregates account for ≈3% of the total number of bacterial and 

archaeal cells in the marine environment (link to full calculation). Our samples of the 

concentration of bacterial and archaeal cells attached to macroaggregates cover depths up to 1000 

meters. We could not find samples of the abundance of particle-attached cells in the bathypelagic 

realm. We assume that measurements in the epipelagic and mesopelagic realms are characteristic 

of the bathypelagic realm. To support this assumption, we compare the concentration of 

macroaggregates measured in the deep-sea (45–47). We find that the concentration of 

macroaggregates in the deep-sea is similar to the concentration of macroaggregates reported in 

the studies on which we rely (link to full calculation).  

 

For microaggregates, we have a more limited set of observations (48, 49), but they suggest that 

bacteria and archaea on microaggregates account for ≈4% of the total number of cells (link to full 

calculation). It is important to note that from the available data (37, 40, 42, 43, 50) the 

characteristic volume of bacterial and archaeal cells on aggregates is typically larger than that of 

free-living bacteria and archaea in the marine environment. The data on the specific factor by 

which particle-attached cells are larger than free-living cells is very limited. We rely on several 

studies (37, 40, 42, 43, 50), which suggest that, on average, particle-attached cells contain ≈3-fold 

more carbon than free-living cells (link to full calculation). This means that even though in terms 

of cell abundance particle-attached cells account for ≈7% of the total population of cells in the 

marine environment, in terms of carbon content they account for ≈20% of the total carbon (link to 

full calculation). In order to account for the additional biomass contributed by particle-attached 

bacteria and archaea, we use ≈1.6 Gt C (instead of the ≈1.3 Gt C calculated above) as our best 

estimate for the total biomass of marine bacteria and archaea. We note that depending on the 

method used to estimate the total number of bacterial cells in the ocean, some cells attached to 

microaggregates might be counted as free-living (the microaggregates are transparent, so in case 

cells are counted by microscopy, they might be counted as free-living). Due to the scarcity of 

data, we assume the distribution of biomass between bacteria and archaea on particles is similar 

to that of the surrounding water. Our estimates on the total abundance and carbon content of 

particle-attached cells in the oceans is much less robust that our estimates for free-living cells, 

and much more comprehensive data is needed to probe the global importance of particle-attached 

cells in the ocean.  

https://paperpile.com/c/C72ZXm/oP7M
https://paperpile.com/c/C72ZXm/iRCM+e071+vnXR+x8NS+lqW2+2vhc+noIj+s7vJ
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Macroaggregates
https://paperpile.com/c/C72ZXm/uAqu+ayPO+4PHq
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Macroaggregates
https://paperpile.com/c/C72ZXm/wLPz+U3Pn
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Microaggregates
https://paperpile.com/c/C72ZXm/noIj+2vhc+x8NS+iRCM+qo8U
https://paperpile.com/c/C72ZXm/iRCM+x8NS+2vhc+noIj+qo8U
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Carbon-content-of-particle-attached-cells
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Estimateing-the-biomass-contribution-of-particle-attached-bacteria-and-archaea-in-the-ocean
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The abundance of archaea in the deep ocean (mesopelagic realm, 200-1000m depth, and 

bathypelagic realm, 1000-4000m depth) has been reported by Karner et al. (51), which estimated 

that archaea constitute about half the prokaryotic cells below 1000m in the Hawai'i Ocean Time-

series station. Karner et al. (51) used fluorescent in-situ hybridization (FISH) with specific 16S 

probes to estimate the fraction of bacteria and archaea out of the total population of prokaryotes. 

In shallower waters, bacteria dominate the population (51). Similar findings were found using 

FISH in the Atlantic Ocean (52, 53). To rigorously estimate the fraction of archaea out of the total 

biomass of marine prokaryotes, we rely on two independent methods - FISH and 16S rDNA 

sequencing. A recent paper by Lloyd et al. (28) collected studies reporting on the number of 

archaea and bacteria at different depths, based on FISH. As part of the procedure to estimate the 

total number of marine prokaryotes from the data in Lloyd, we calculate the total number of 

archaeal and bacterial cells. The fraction of archaeal cells out of the total number of bacterial and 

archaeal cells is ≈20%. In the epipelagic, mesopelagic and bathypelagic zone, archaea represent 

≈6%, 24% and 35% of the the total number of cells, respectively (link to full calculation). An 

alternative methodology to quantify the fraction of archaea out of the marine prokaryote 

population is by using 16S rDNA sequencing. We use studies which have measured the fraction 

of archaea in the epipelagic, mesopelagic and bathypelagic realms. For the epipelagic and 

mesopelagic realms, we use data from the Tara Oceans campaign (54), which is based on ≈250 

samples worldwide. The fraction of archaeal 16S rDNA sequences out of the total pool of 16S 

sequences in the epipelagic and mesopelagic realms is ≈4% and ≈14%, respectively (link to full 

calculation). For the bathypelagic realm, we rely on data from the recent Malaspina campaign 

(55), which is based on 30 samples ranging in depth from ≈2 km to ≈4 km. The average fraction 

of archaeal 16S rDNA sequences out of the total pool of 16S sequences is ≈15% (link to full 

calculation). Estimates based on 16S rDNA sequencing data are lower by about 2-fold than FISH-

based estimates for the fraction of archaea across depths. This might be caused by the fact that the 

copy number of rRNA operons in bacterial genomes is on average ≈2-fold larger than that of 

archaeal genomes (56). We use the geometric mean of estimates from the two methodologies as 

our best guess for the fraction of archaea out of the total population of marine prokaryotes in the 

different layers of the ocean. Our best estimates for the epipelagic, mesopelagic and bathypelagic 

realms are thus ≈7%, 26%, and 32%, respectively (link to full calculation). From the data in 

Arístegui et al. and in Lloyd et al. we generate estimates for the fraction of prokaryotes that are 

found in the epipelagic, mesopelagic, and bathypelagic realms. Applying the fractions of archaea 

across the different environments, we estimate that archaeal cells represent ≈20% of the total cells 

of marine prokaryotes (link to full calculation). As the average cell sizes of bacteria and archaea 

don’t seem to vary considerably (57), we estimate that the biomass of marine archaea represents 

≈20% of the total biomass of marine prokaryotes, which is ≈0.3 Gt C. This puts the estimate of 

the biomass of marine bacteria at ≈1.3 Gt C (link to full calculation). 

 

We now analyze the associated uncertainty of the estimate for the total biomass of marine 

bacteria and archaea, which we report as a fold-change factor from the mean representing a range 

akin to a 95% confidence interval of the estimate. In this analysis, we consider the following 

factors. First, we assess the uncertainty associated with the estimate of the total number of marine 

prokaryotes. We then estimate the uncertainty associated with the estimate of the characteristic 

https://paperpile.com/c/C72ZXm/ojwt
https://paperpile.com/c/C72ZXm/ojwt
https://paperpile.com/c/C72ZXm/ojwt
https://paperpile.com/c/C72ZXm/6tsO+aGBK
https://paperpile.com/c/C72ZXm/4wls
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#FISH-based-estimate
https://paperpile.com/c/C72ZXm/c6Db
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#16S-rDNA-sequencing
https://paperpile.com/c/C72ZXm/JwUq
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#16S-rDNA-sequencing
https://paperpile.com/c/C72ZXm/R3TZ
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#Estimating-the-fraction-of-the-population-in-each-depth-layer
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#Estimating-the-fraction-of-the-population-in-each-depth-layer
https://paperpile.com/c/C72ZXm/Tw34
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/marine_prok_biomass_estimate.html
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carbon content of a single marine prokaryote. Finally, we assess the uncertainty associated with 

the estimate of the fraction of archaea out of the total population of marine prokaryotes. The 

intra-study uncertainty reported in Arístegui et al. for the estimate of the cell concentration is 

≈10% of the mean. Buitenhuis et al. and Lloyd et al. do not report uncertainty ranges for the 

estimate of the total number of cells of marine prokaryotes. The inter-study uncertainty between 

these three studies is ≈1.5-fold (link to full calculation). For estimating the characteristic carbon 

content of a single marine prokaryote, we used 9 independent studies which measure carbon 

content in the open ocean. The maximum reported intra-study uncertainty is ≈1.4-fold, and the 

inter-study uncertainty between the five studies is ≈1.4-fold (link to full calculation). We thus 

chose to use ≈1.4-fold to project the uncertainty associated with the carbon content of a single 

marine prokaryote. Combining the uncertainty associated with our estimate of total number and 

the uncertainty associated with our estimate of the carbon content of a single marine prokaryote, 

we arrive at an uncertainty of ≈1.7-fold for the total biomass of marine prokaryotes. We also 

analyze the uncertainty associated with our estimate of the fraction of the total biomass of marine 

bacteria and archaea which is particle-attached. Our estimate relies on two main factors - the 

fraction of the total number of cells which is particle-attached, and the carbon content of particle-

attached bacteria and archaea relative to free-living bacteria and archaea. Our projection for the 

uncertainty associated with our estimate of the fraction of the total number of cells which is 

particle-attached is based on collecting the intra-study and inter-study uncertainty associated with 

the estimate of the fraction of the total number of cells which are particle-attached, and using the 

maximum of the uncertainties values, which is ≈3-fold (link to full calculation). We repeat the 

same procedure for the estimate of the carbon content of particle-attached cells relative to free-

living cells, and project an uncertainty of ≈3-fold (link to full calculation). We combine the 

uncertainties associated with the two factors and project an uncertainty of ≈5-fold associated with 

our estimate of the total biomass of marine bacteria and archaea which are attached to particles 

(link to full calculation). We then combine the uncertainty of the total biomass of free-living 

bacteria and archaea and particle-attached bacteria and archaea, and project an uncertainty of 

≈1.8-fold associated with our estimate of the total biomass of marine bacteria and archaea. 

For the fraction of archaea out of the population of marine prokaryotes, the intra-study 

uncertainty is ≈1.2-fold for Salazar et al. and ≈1.1-fold for Lloyd et al. (link to full calculation). 

The inter-study uncertainty between FISH-based studies and 16S rDNA sequencing-based studies 

is around ≈2.3-fold for archaea and ≈1.3-fold for bacteria (link to full calculation). We use the 

higher inter-study uncertainties for projecting the uncertainty of the fraction of marine archaea 

and bacteria out of the total marine prokaryote population. Combining the uncertainties for the 

biomass of marine prokaryotes with the uncertainties associated with the estimate of the fraction 

of archaeal and bacterial cells out of the total population of marine prokaryotes, we project an 

uncertainty of ≈2-fold for the biomass of marine bacteria, and ≈3-fold for marine archaea (link to 

full calculation).  

 

Soil 

To estimate the total biomass of soil bacteria and archaea, we rely on the estimate of the total 

biomass of soil microbes we derived in the soil fungi section. We estimate a total microbial 

biomass of 20 Gt C, of which ≈12 Gt C are fungal. This leaves us with ≈8 Gt C of bacterial and 

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Interstudy-uncertainties
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/carbon_content/marine_prok_carbon_content.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Fraction-of-cells
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Relative-size-based
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/POC_prokaroytes/POC_prokaryotes.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#Intra-study-uncertainty
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/arch_bac_ratio/marine_arch_frac.html#Interstudy-uncertainty
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/marine_prok_biomass_estimate.html
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archaeal biomass. In order to derive the respective fractions of archaea and bacteria out of this 

total biomass, we rely on four independent methods which estimate the fraction of archaea out of 

the total biomass of bacteria and archaea. The methods we rely upon are 16S rDNA sequencing, 

16S rDNA quantitative PCR (qPCR), fluorescent in-situ hybridization (FISH), and catalyzed 

reporter deposition FISH (CARD-FISH). We calculated the mean estimate of the fraction of 

archaea out of the total biomass of soil bacteria and archaea for each method. We then used the 

geometric mean of values from the different methods as our best estimate for the fraction of 

archaea out of the total biomass of soil bacteria and archaea. For our 16S rDNA sequencing-based 

estimate, we rely on a study which reported values for the fraction of archaea out of the total 

population of soil bacteria and archaea in 146 soils from across the globe (58). The mean fraction 

of archaea reported by Bates et al. (58) is ≈2%. We account for the lower rRNA operon copy 

number in archaea (56) by multiplying the measured fractions by a factor of 2. This procedure 

does not affect our results significantly. For our 16S qPCR-based estimate, we rely on a recent 

study which reported the fraction of archaea out of the total population of soil bacteria and 

archaea in grasslands, forests and croplands in Korea (59). The mean fraction of archaea reported 

by Hong & Cho (59) is ≈3%. For our FISH-based estimate, we assembled data from about 10 

studies (60–68). We calculate the mean fraction of archaea across these studies, which is ≈20% as 

our best FISH-based estimate for the fraction of archaea out of the total population of soil bacteria 

and archaea (link to full calculation). For our CARD-FISH-based estimate, we assembled data 

from four studies (69–72). We calculate the mean fraction of archaea across these studies, which 

is ≈20% as our best CARD-FISH-based estimate for the fraction of archaea out of the total 

population of soil bacteria and archaea (link to full calculation). To generate our best estimate for 

the fraction of archaea out of the total biomass of soil bacteria and archaea, we use the geometric 

mean of these four estimates based on the four different methodologies. We thus estimate that 

archaea represent ≈7% of the total biomass of soil bacteria and archaea (link to full calculation). 

We combine this estimate with our estimate for the total biomass of soil bacteria and archaea, 

which is 8 Gt C, and arrive at an estimate of ≈0.5 Gt C of soil archaea, and ≈7 Gt C of soil 

bacteria (link to full calculation). 

 

The different methods we rely on to estimate the fraction of archaea out of the population of soil 

bacteria and archaea have various caveats associated with them. In general, for methods based on 

quantifying relative abundances of 16S rDNA sequences, we rely on the assumption that the 

abundance of 16S rDNA sequences is proportional to the biomass of bacteria and archaea. 

Relying on 16S sequence abundance as a proxy for biomass is not a well-established practice. For 

qPCR, a recent meta-analysis claimed relative fractions of archaea and bacteria calculated using 

this methodology are reliable for the marine environment and in subseafloor sediments (28). 

However, we only have a limited amount of data which is based on qPCR measurements. The 

same meta-analysis by Lloyd et al. also states that the use of FISH or CARD-FISH for 

quantifying the abundance of archaea and bacteria is very sensitive to the details of the 

experimental protocol and was found to reliably represent the community structure of subseafloor 

sediments only under a specific set of protocol parameters (e.g. CARD-FISH with cell 

permeabilization using proteinase K). It is thus not obvious that the estimates based on FISH or 

CARD-FISH represent reliably the fraction of archaea out of the total population of soil bacteria 

and archaea. Due to lack of better options, we chose to use the geometric mean of these four 

https://paperpile.com/c/C72ZXm/zY0w
https://paperpile.com/c/C72ZXm/zY0w
https://paperpile.com/c/C72ZXm/R3TZ
https://paperpile.com/c/C72ZXm/v7Eh
https://paperpile.com/c/C72ZXm/v7Eh
https://paperpile.com/c/C72ZXm/y2yE+NtPA+kFVy+SUfK+LHiL+a8cz+AFN4+cqmA+04lE
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#FISH-based-estimate
https://paperpile.com/c/C72ZXm/GW7l+Lqkx+esXe+phBF
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#CARD-FISH-based-estimate
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#Estimating-the-fraction-of-archaea-out-of-the-total-soil-prokaryote-population
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html
https://paperpile.com/c/C72ZXm/4wls
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methods, each with its own caveats as our best estimate. We hope that further research will shed 

light on the appropriate methodology to quantitatively describe biomass distribution of soil 

microbes. 

 

We now analyze the associated uncertainty of the estimate for the total biomass of soil bacteria 

and archaea, which we report as a fold-change factor from the mean, representing a range akin to 

a 95% confidence interval of the estimate. We first assess the uncertainty associated with our 

estimate of the fraction of archaea out of the total biomass of soil bacteria and archaea. As a 

measure of the uncertainty associated with our estimate of the fraction of archaea out of the total 

biomass of soil bacteria and archaea, we collect the intra-study, inter-study, inter-habitat and 

inter-method uncertainties within and between each of the four methods we rely on to estimate 

the fraction of archaea out of the total biomass of soil bacteria and archaea. We use the maximal 

uncertainty among this collection as our best projection of the uncertainty associated with our 

estimate of the fraction of archaea out of the total biomass of soil bacteria and archaea. We thus 

project that ≈4-fold uncertainty associated with our estimate of the fraction of archaea and ≈1.5-

fold uncertainty associated with our estimate of the fraction of bacteria out of the total biomass of 

soil bacteria and archaea (link to full calculation). We combine this uncertainty with the 

uncertainty associated with our estimate of the total biomass of soil prokaryotes (bacteria and 

archaea), which we derive in the soil fungi section. The uncertainty we project as associated with 

the total biomass of soil prokaryotes is ≈4-fold. We thus project an uncertainty of ≈6-fold for our 

estimate of the total biomass of soil archaea, and ≈4-fold for our estimate of soil bacteria (link to 

full calculation). 

  

Marine deep subsurface sediment 

The two major habitats of microbes in the marine deep subsurface are subseafloor sediments and 

the oceanic crust (73, 74). We first focus on subseafloor sediments, as much more data is 

available on this environment. We then turn to look at the oceanic crust. 

Whitman et al. (25) originally estimated the global biomass of bacteria and archaea in subseafloor 

sediments to be around 300 Gt C residing within ≈3×1030 cells. A later study (75) revealed that 

the original estimates by Whitman were based on extrapolation from samples which were not 

representative of the different levels of productivity in the marine environment. Using additional 

sampling, the study by Kallmeyer et al. updated the estimate for the total number of prokaryotes 

in the subseafloor sediments to around ≈3×1029 cells, an order of magnitude lower than 

Whitman’s original estimate. The estimate by Kallmeyer et al. is based on sampling of cell 

densities worldwide at different depths. Kallmeyer et al. built a model to predict cell 

concentration as a function of location and depth below seafloor. The model uses distance from 

shore and sedimentation rate as the primary explanatory variables. The specific parameters of the 

model are given in detail in (75). Kallmeyer et al. plugged into the model global data on 

sedimentation rates and the distance from shore, and used the model to predict cell concentrations 

at each location in the marine subsurface. Kallmeyer et al. then integrated the predicted cell 

concentrations across the entire volume subseafloor sediments the generate an estimate for the 

total number of cells in subseafloor sediments. A later study (76), gives a slightly higher estimate 

for the total number of prokaryotic cells in subseafloor sediments. Parkes et al. calculated the 

total number of cells in the subseafloor sediments by using regression of cell concentrations 

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/qWqb+eFBr
https://paperpile.com/c/C72ZXm/BbJj
https://paperpile.com/c/C72ZXm/cd7Q
https://paperpile.com/c/C72ZXm/cd7Q
https://paperpile.com/c/C72ZXm/fYyx
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across different sampling points by depth, generating an average cell concentration for each depth 

and multiplying the average cell concentration by the total global volume at each depth. In total, 

Parkes et al. estimate ≈5×1029 cells. Parkes et al. claim that the difference between their estimate 

of ≈5×1029 cells and the ≈3×1029 cells estimated by Kallmeyer et al. could stem from areas with 

higher activity of deep sediment prokaryotes that were included in their study and excluded by 

Kallmeyer et al. As our best estimate for the number of cells in the marine deep subsurface, we 

use the geometric mean of the estimates from Kallmeyer et al. and Parkes et al., which is ≈4×1029 

cells (link to full calculation). To estimate the total biomass of prokaryotes in subseafloor 

sediments we need to estimate a characteristic carbon content for an average single prokaryote in 

subseafloor sediments. For estimating the carbon content of a single prokaryote in subseafloor 

sediments, we rely on four previous studies. The first study to estimate the carbon content of 

prokaryotes in subseafloor sediments is Parkes et al. (77), which measured a characteristic cell 

volume of ≈0.2 µm3. Parkes et al. converted this volume into carbon content by using a carbon 

density per unit volume of 310 fg C µm-3 (78). Parkes et al. thus arrived at an estimate of ≈65 fg 

C cell-1. A later study by Whitman et al. (25) relied on a single study which measured cell dry 

weight from a terrestrial aquifer to arrive at a carbon content of ≈86 fg C. In one of the main 

studies establishing the important role of archaea in subseafloor sediments, Lipp et al. (79) used 

measures for the characteristic diameter of a cells of ≈0.5 µm, based on data from Peru collected 

by Biddle et al. (80). They assumed cells as spherical, and thus arrived at an estimate of ≈0.0625 

µm3 for the volume of cells. Lipp et al. converted the characteristic volume of cells to carbon 

content based an allometric equation constructed for marine bacteria (81), which have similar 

volumes. Lipp et al. arrived at an estimate of ≈18 fg C cell-1. In their study, Kallmeyer et al. (75) 

used microscopy to measure the length and width of microbes in subseafloor sediments at the 

South Pacific Gyre. Kallmeyer et al. then estimate the biovolume of cells assuming either rod or 

spherical shapes and converted biovolume to carbon content using the same allometric equation 

from Simon & Azam (81). Kallmeyer et al. calculated a lower carbon content in each cell of ≈14 

fg cell-1. A recent study (82) measured cell volumes as well as amino acid content per cell in 

samples from the Baltic sea. Braun et al. used the assumption that carbon in amino acids 

constitute ≈55% of cellular carbon (83) to estimate the carbon content of cells. The estimate from 

Braun et al. of ≈22 fg C cell-1.  

These four studies represent two independent methods for estimating carbon content (based on 

cell biovolume and based on amino acid carbon measurement), and four independent sampling 

efforts. To generate our best estimate for the carbon content of prokaryotes in subseafloor 

sediments we calculate the mean carbon content for each of the two methodologies. To calculate 

the mean carbon content for the biovolume-based methodology, we use reported biovolumes 

from the four studies. To convert biovolume to carbon content, we use two independent methods. 

The first method is by using the allometric relation from Simon & Azam, and the second is by 

multiplying by carbon density of 310 fg C µm-3 based on Fry et al. (78). For each of those 

conversion methods, we calculate the geometric mean across studies. This gives us two 

characteristic carbon contents, which are based on biovolume measurements. Our estimate for the 

amino acid-based carbon content is based on the mean value measured in Braun et al. across 

samples. These three values for the carbon content of prokaryotes in subseafloor sediments are 

independent of each other and are based on different types of assumptions. We use the geometric 

mean of the biovolume-based carbon content estimate and the amino acid-based carbon content 

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/cell_num/marine_deep_subsurface_prok_cell_num.html#Estimating-the-total-number-of-bacteria-and-archaea-in-the-marine-deep-subsurface
https://paperpile.com/c/C72ZXm/53P2
https://paperpile.com/c/C72ZXm/yW8w
https://paperpile.com/c/C72ZXm/BbJj
https://paperpile.com/c/C72ZXm/uz9U
https://paperpile.com/c/C72ZXm/YMOp
https://paperpile.com/c/C72ZXm/cCs1
https://paperpile.com/c/C72ZXm/cd7Q
https://paperpile.com/c/C72ZXm/cCs1
https://paperpile.com/c/C72ZXm/q5Qs
https://paperpile.com/c/C72ZXm/RLWB
https://paperpile.com/c/C72ZXm/yW8w
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as our best estimate for the carbon content of prokaryotes in subseafloor sediments. Our best 

estimate following this methodology is ≈24 fg C cell-1 (link to full calculation). Multiplying our 

best estimate for the number of cells in subseafloor sediments of ≈4×1029 cells by our best 

estimate for the carbon content of prokaryotes in subseafloor sediments of ≈24 fg C, we arrive at 

our best guess for the total biomass of prokaryotes in subseafloor sediments of ≈10 Gt C. The 

combination of lower estimates for the total number of cells in the subseafloor sediments, as well 

as the lower estimate of carbon content per cell results in an estimate which is ≈30-fold lower 

than the original estimate by Whitman. The need for such a significant revision was already 

pointed out by Kallmeyer et al. (75).  

 

In 2008, a study (79) estimated that the biomass of prokaryotes in subseafloor sediments is 

dominated by archaea, based on the fraction of intact polar membrane lipids (IPLs) that is 

associated with archaea. However, later studies (84) have discovered that due to a low 

degradation rate of IPLs, using IPLs as a measure of archaeal biomass will overestimate their 

biomass. The current view which integrates independent methods such as IPLs, FISH and 16S 

sequencing, is that archaea and bacteria constitute a similar fraction of the total number of 

prokaryotes (28, 76, 85). Our best estimate for the fraction of archaea out of the population of 

prokaryotes in subseafloor sediments is based on two independent methods - qPCR and catalyzed 

reporter deposition FISH (CARD-FISH). These two methods were recently validated in a meta-

analysis to be reliable for reporting the fraction of archaeal cells out of the total population of 

prokaryotes in subseafloor sediments (28). We use the values reported in Lloyd et al. for 

sediments which are deeper than 10 cm (the range for which biomass is reported in Kallmeyer et 

al.). For each methodology we calculate a mean fraction across all sampled depths. For our best 

estimate, we use the geometric mean of the two fractions - the one based on qPCR and CARD-

FISH. The geometric mean of the two methods is ≈1/3 (link to full calculation). Cell sizes of 

archaea and bacteria in subseafloor sediments are similar (75, 86), and thus we estimate that the 

biomass of archaea in subseafloor sediments is roughly one third of the total biomass of 

prokaryotes, or ≈3 Gt C. Correspondingly, our best estimate for the biomass of bacteria in 

subseafloor sediments is ≈7 Gt C (link to full calculation). 

 

The estimate by Kallmeyer et al. does not take into account biomass of bacteria and archaea in the 

top 10 cm of subseafloor sediments. To estimate the biomass contribution of bacteria and archaea 

in the top 10 cm of sediments, we rely on two main sources which report the total biomass of 

bacteria and archaea in the top layer of sediments (87, 88). There is a large discrepancy between 

the values reported in these two studies. Whereas Wei et al. (87) reports ≈0.04 Gt C of bacteria 

and archaea in the top ≈10 cm of subseafloor sediments, Danovaro et al. (88) reports ≈1.5 Gt C in 

the top 50 cm of subseafloor sediments. This discrepancy is present even though both studies rely 

in large part on the same data source (89). If we use the exponential decay in cell abundance with 

sediment depth reported in Danovaro et al. to estimate the biomass of bacteria and archaea only in 

the top 10 cm of the sediment from Danovaro et al., we arrive at ≈0.6 Gt C. This order of 

magnitude difference between the two estimates stems in small part from different values used for 

the characteristic carbon content of bacteria and archaea. Even if we take the higher estimate of 

≈0.6 Gt C, it would not affect our total estimate for the biomass of bacteria and archaea in the 

subseafloor sediment significantly. 

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/carbon_content/marine_deep_subsurface_prok_carbon_content.html#Estimating-the-carbon-content-of-marine-bacteria-and-archaea
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In addition to subseafloor sediments, microbes are also present in fluids inside the oceanic crust. 

This habitat is much less explored than subseafloor sediments, and thus estimates of the total 

biomass of prokaryotes in the ocean’s crust are more speculative. The total volume of the oceanic 

crust with temperatures that can sustain life (<120° C) is ~1018 m3 (90). This includes three main 

layers - a basalt layer that is 0.5-1-kilometer-thick, a layer of sheeted dike complex and a bottom 

layer of gabbroic rock. The basaltic layer is the only layer to host significant porosity and 

permeability and hence this is probably the most significant portion to consider for 

microbiological habitation and processes (74). The total volume of pore water in the basaltic layer 

of the oceanic crust is estimated at ≈2×1022 mL (91). A very sparse collection of measurements of 

cell concentrations is available for the oceanic crust. The available data suggest cell 

concentrations on the order of ~104 cells mL-1 in crustal fluids. These concentrations of cells were 

observed both in warm fluids of the eastern flank of the Juan de Fuca Ridge (92, 93), and the 

cooler fluids of the North Pond site which are supposed to be more representative of the upper 

crust (94). A major gap in understanding the abundance of microbes in the oceanic crust is that 

most of the measurements of microbial biomass are for crustal fluids, and there are very few 

samples of microbial populations attached to the rocks themselves. Assuming oceanic crust 

aquifers are similar in nature to deep terrestrial aquifers, cells present in oceanic crustal fluids 

represent only a small minority of the cells in the oceanic crust, with ≈102-103 more attached cells 

than free-living cells. This claim might be an overestimate, as complete basalt samples, and not 

crustal fluids samples, taken from the same North Pond site, contained as a whole ~104 cells per 

cm3 of rock (95). The extraction procedure of Zhang et al. is supposed to detach cells attached to 

surfaces, so these results suggest that the total ratio between attached and unattached cells might 

be much lower than in the terrestrial aquifer. Still, even this procedure might not extract the entire 

population of attached cells. For estimating the total biomass of prokaryotes in the oceanic crust, 

we chose to use ratios of attached/unattached cells of ~102-103 (serving potentially as a liberal 

upper limit), which brings the total cell densities to ~106-107 cells mL-1. Applying these total cell 

densities across the entire volume of the ocean crust aquifer, we get an estimate of a total of 

2×1028-2×1029 cells. Assuming prokaryotes in the oceanic crust have similar carbon content to 

those present in subseafloor sediments or in the terrestrial deep subsurface, we assume a carbon 

content of ≈25 fg C per cell. Multiplying the total number of cells by the characteristic carbon 

content of a bacterial or archaeal cell, we estimate a total biomass of prokaryotes in the oceanic 

crust of 0.5-5 Gt C. As our best estimate for the biomass of prokaryotes in the oceanic crust, we 

use the geometric mean of the higher and lower estimates, which is ≈1.5 Gt C. Cells might also 

be present in lower layers of the ocean crust, such as the gabbroic layer. However, from the 

limited available data, cell densities seem to be more than an order of magnitude lower than those 

found in the upper crust (96), and thus will not affect the estimates for the total biomass of 

microbes in the ocean crust significantly. By this estimate, the global biomass of prokaryotes in 

the oceanic crust represents ≈15% of the total biomass of prokaryotes in subseafloor sediments. 

Therefore, including it or excluding it will not dramatically affect our estimate for the total 

biomass of prokaryotes in the marine deep subsurface. Notably, our estimate of ≈1.5 Gt C is 

markedly lower than an earlier estimate by Heberling et al. (90), which estimated about 200 Gt C.  

The specific procedure Heberling et al. used to estimate the total biomass of prokaryotes in the 

oceanic crust is not available, but it involved estimating the total volume of pore water in the 
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oceanic crust and estimating the total volume of bacterial and archaeal cells using the assumption 

that cells account for ≈0.016% of the pore water volume. This value for the fraction of cells out of 

the total volume of pore water is based on Whitman et al. (25), which used data in Harvey et al. 

(97). Harvey et al. measured a total amount of ≈2-4×107 cells per cm3 of aquifer material. 

Whitman et al. presumably arrived at the estimate of ≈0.016% by assuming a volume of a 

bacterial cell is ≈1 µm3 and using porosity data from Harvey et al. of ≈0.15-0.19. The volume of a 

bacterial cell used by Whitman et al. ≈1µm3 is very likely a large overestimate, as this volume is 

usually characteristic of Escherichia coli cells grown in the lab (Bionumber ID 109483). In deep 

and nutrient-limited environments, such as subseafloor sediments and the terrestrial deep 

subsurface, cells are much smaller, with a characteristic volume of ≈0.1 µm3. This means the 

fraction of pore water taken up by cells is an order of magnitude lower than the fraction estimated 

by Whitman et al. In addition, Whitman et al. calculated the fraction of pore water colonized by 

cells based on samples which are pretty shallow (<50 m in depth), and contain free-living cell 

densities of ~106 cells mL-1, about two-orders of magnitude larger than the ones measured in the 

oceanic crust. As both in the terrestrial deep subsurface and in subseafloor sediments an 

exponential decrease in cell densities with sample depth (75, 98) was observed, using shallow 

samples to estimate the number of cells across the entire volume of the oceanic crust is probably 

an overestimate. Overall, we believe these factors help to explain the discrepancy between our 

estimate and the estimate provided in Heberling et al. 

 

We now analyze the associated uncertainty of the estimate for the total biomass of bacteria and 

archaea in the marine deep subsurface, which we report as a fold-change factor from the mean 

representing a range akin to a 95% confidence interval of the estimate. The two main factors 

affecting the estimate of the biomass of marine deep subsurface prokaryotes are the number of 

cells and the carbon content of each cell. For the number of cells, the intra-study uncertainty 

reported in Parkes et al. (76) is ≈5-fold for the 95% confidence interval. Kallmeyer et al. (75) 

reports a standard deviation of ≈2.6-fold for the total number of prokaryotes in the deep marine 

subsurface, based on bootstrapping the model parameters. We assume this bootstrapping results 

in a distribution which can be approximated as a lognormal distribution, and thus the 95% 

confidence interval for the estimate is ≈7-fold range (link to full calculation). The inter-study 

uncertainty between the number of cells reported in Parkes et al. and Kallmeyer et al. is ≈2-fold 

(link to full calculation). We thus choose to take the highest uncertainty range out of the intra-

study and interstudy uncertainties and project an uncertainty of ≈7-fold for the number of 

prokaryotes in the marine deep subsurface. For the uncertainty of the carbon content of marine 

deep subsurface prokaryotes, the studies on which we rely do not report uncertainty ranges 

around the mean carbon content but do supply the ranges of measured values. Thus, to project the 

uncertainty associated with the estimate of the carbon content of marine deep subsurface 

prokaryotes, we calculate the inter-study uncertainty between studies using the same 

methodology, and between different methodologies. The highest uncertainty amongst this 

collection of uncertainties is ≈2-fold (link to full calculation). We thus use this uncertainty as our 

projected uncertainty associated with the estimate of the carbon content of marine deep 

subsurface prokaryotes. Combining the uncertainty of the carbon content of cells in the marine 

deep subsurface with the uncertainty of the total number of cells, we project that the uncertainty 

of the biomass of marine deep subsurface prokaryotes is about 8-fold. In addition to the 
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https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/cell_num/marine_deep_subsurface_prok_cell_num.html#Intra-study-uncertainty
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/cell_num/marine_deep_subsurface_prok_cell_num.html#Interstudy-uncetainty
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/carbon_content/marine_deep_subsurface_prok_carbon_content.html#Uncertainty-analysis
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uncertainty associated with the estimate of the total biomass of the marine deep subsurface 

prokaryotes, estimating the fraction of biomass of archaea has uncertainty associated with it. To 

estimate the uncertainty associated with estimates for the fraction of archaea out of the total 

population of prokaryotes, we rely on the data from Lloyd et al. (28), who used two independent 

methods to estimate the fraction of archaea out of the population of prokaryotes. We estimate the 

uncertainty of the data within each method, as well as the uncertainty between the characteristic 

values for each method. Whereas the intra-method uncertainty is about 1.2-fold, the uncertainty 

between methods is ≈1.6-fold for the fraction of archaea and ≈1.3-fold for the fraction of bacteria 

(link to full calculation). As the cell size of archaea and bacteria in the marine deep subsurface is 

similar (75, 86), we estimate that it does not introduce further uncertainty to the total estimate. 

We combine the uncertainty of the fraction of archaea and bacteria out of the total biomass of 

prokaryotes with the uncertainty of about an order of magnitude for the total biomass of 

prokaryotes in the marine deep subsurface. We thus estimate that the total uncertainty of the 

estimate for the biomass of marine deep subsurface archaea and bacteria is roughly 8-fold each 

(link to full calculation).  

 

Terrestrial deep subsurface 

We follow the definition made by Whitman et al. for the terrestrial deep subsurface as the 

terrestrial substratum deeper than 8 m, excluding soil. In the spirit of Kallmeyer et al. (75) 

revisiting the question of the marine sedimentary prokaryote biomass, McMahon & Parnell (98) 

revisited Whitman’s original estimate of the terrestrial sedimentary prokaryote biomass (25). The 

original estimate by Whitman was based on three separate approaches. For the lower limit, 

Whitman et al. used sampling of cell concentrations from unconsolidated sediments and inferred 

the total number of cells globally. As unconsolidated sediments represent only ≈20% of the 

terrestrial deep subsurface (25), this estimate was considered as an underestimate. For the upper 

limit, Whitman et al. used sampling of cell concentrations from groundwater, and extrapolated the 

global biomass by using the ratio of attached and unattached cells in groundwater and the total 

groundwater volume. Alternatively, Whitman et al. used the soil porosity and the fraction of pore 

volume occupied by cells. From the estimate of the total amount of cells in the terrestrial deep 

subsurface, Whitman et al. estimated the global biomass of prokaryotes in the terrestrial deep 

subsurface by using a carbon content of 86 fg cell-1. More recently, McMahon & Parnell (98), 

used a similar approach of extrapolating groundwater cell concentrations along with the ratio of 

attached to unattached cells. Our estimate of the total biomass of prokaryotes in the terrestrial 

deep subsurface relies on data from McMahon & Parnell, along with an updated estimate for the 

total volume of groundwater from Gleeson et al. (99). We use the measurements of cell 

concentrations in groundwater reported in McMahon & Parnell and followed a similar procedure 

of binning the measurements along depth bins of 250 meters. In each depth bin, we calculate the 

characteristic concentration of cells per mL of groundwater. We generated two types 

characteristic concentrations at each depth bin - an estimate which uses the arithmetic mean of 

cell concentrations at each depth bin, and an estimate which uses the geometric mean of cell 

concentrations at each depth bin. The estimate based on the arithmetic mean is more susceptible 

to sampling bias, as even a single measurement which is not characteristic of the global 

population (such as samples which are contaminated with organic carbon sources, or samples 
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which have some technical biases associated with them) might shift the average concentration 

significantly. On the other hand, the estimate based on the geometric mean might underestimate 

global biomass as it will reduce the effect of biologically relevant high biomass concentrations. 

As a compromise between these two caveats, we chose to use as our best estimate the geometric 

mean of the estimates from the two methodologies. Cell concentrations in depth bins with 

missing values were extrapolated from a fit to an exponential decay function of the available data. 

To estimate the total number of cells of prokaryotes in groundwater, we estimate the total volume 

of water at each depth bin from data reported in Gleeson et al. We multiply the characteristic cell 

concentration at each depth by the total volume of groundwater at each depth, and sum over all 

depth bins to estimate the total number of prokaryotes in groundwater. From the total number of 

cells in groundwater, we estimate the total number of cells in the terrestrial deep subsurface by 

following the same procedure used by McMahon & Parnell. McMahon & Parnell use the ratio of 

attached to unattached cells and estimate a range of 102-103 for this ratio. As our best estimate for 

the ratio of attached to unattached cells in the terrestrial deep subsurface, we use the geometric 

mean of these minimum and maximum values from the range reported by McMahon & Parnell. 

We multiply our estimate for the total number of cells in groundwater by our best estimate for the 

ratio of attached to unattached cells, and arrive at an estimate of ≈2×1030 prokaryotes in the 

terrestrial deep subsurface (link to full calculation). To get from the total number of prokaryotes 

to an estimate of the total biomass of prokaryotes in the terrestrial deep subsurface, we use the 

carbon content of single bacterial or archaeal cells used by McMahon & Parnell, which is ≈ 26 fg 

C cell-1. This value is similar to our best estimate of the characteristic carbon content of cells in 

subseafloor sediments. In total, we estimate a biomass of ≈60 Gt C for prokaryotes (bacteria and 

archaea) in the terrestrial deep subsurface (link to full calculation). Notably, this estimate only 

takes into account prokaryotes present in the top 2 km of the terrestrial subsurface. The top ≈5 km 

of the terrestrial subsurface are estimated to be habitable by life (100). However, using the 

regression of cell concentration with depth, the average cell concentrations in depths of 2-5 km 

below the surface are estimated to be more than two orders of magnitude lower than the average 

cell concentrations in the upper 2 km. Thus, the biomass of bacteria and archaea in depths below 

2 km probably do not affect the total estimate significantly. Nevertheless, the trends observed in 

the top 2 km of the terrestrial subsurface might not be applicable to deeper layers, and further 

research is needed to establish the actual contribution from deeper layers. 

 

There are only few studies about the abundance of archaea in the terrestrial subsurface, and thus 

estimating accurately the fraction of the biomass of terrestrial deep subsurface prokaryotes 

contributed by archaea is challenging. To estimate the fraction of archaea out of the total biomass 

of prokaryotes in the terrestrial subsurface, we rely on four different lines of evidence. The first 

three lines of evidence are based on three different methodologies, namely 16S amplicon 

sequencing (101–104), qPCR of rDNA (105–107), and Fluorescent in situ Hybridization (FISH; 

108). For qPCR, a recent meta-analysis claimed relative fractions of archaea and bacteria 

calculated using the methodology are reliable (28). For 16S sequencing data, we account for the 

lower rRNA operon copy number in archaea (56) by multiplying the measured fractions by a 

factor of 2. This procedure does not affect our results significantly. Due to the scarcity of data 

regarding the biomass of archaea in the terrestrial deep subsurface, we chose to also use as an 

additional line of evidence values for the abundance of archaea in another subsurface 
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environment, the marine deep subsurface, where archaea constitute ≈35% of the biomass of 

prokaryotes (28). To generate our best estimate for the abundance of archaea, we integrate the 

available data to get a characteristic value for each line of evidence. We note that the values vary 

widely between 0.004% and 75%. We use the geometric mean of the characteristic values from 

all the different lines of evidence. Our best estimate for the fraction of biomass of archaea out of 

the population of prokaryotes in the terrestrial subsurface is ≈6% (link to full calculation). 

Combining this estimate with our best estimate for the biomass of prokaryotes in the terrestrial 

subsurface, we get an estimate for the total biomass of archaea in the terrestrial deep subsurface 

of ≈4 Gt C. Correspondingly, our best estimate for the biomass of terrestrial deep subsurface 

bacteria is ≈60 Gt C (link to full calculation). 

 

We now analyze the associated uncertainty of the estimate for the total biomass of bacteria and 

archaea in the terrestrial subsurface, which we report as a fold change factor from the mean 

representing a range akin to a 95% confidence interval of the estimate. Assessing the uncertainty 

associated with the estimate of the biomass of the terrestrial deep subsurface prokaryotes is 

challenging due to the scarcity of data sources and the lack of independent estimates for the total 

biomass of terrestrial deep subsurface prokaryotes. We try and quantify the uncertainty associated 

with each of the factors leading to the final estimate. One factor which introduces uncertainty into 

the estimate is the procedure of binning measurements along depth and calculating a 

characteristic concentration of cells at each depth bin. A second parameter controlling the 

estimate of the terrestrial deep subsurface prokaryote biomass is the volume of aquifers present in 

each depth. The volume of aquifers present in each depth range is dependent on the total volume 

of global aquifers, which is estimated at ≈2×1022 mL (99), along with the characteristic porosity 

of the soil, which decreases with depth and thus affects the amount of aquifer water present at 

each depth. Cells in aquifers are divided to unattached cells and attached to soil grains. A third 

main parameter is the ratio of attached to unattached cells. A fourth parameter controlling the 

estimate is the average carbon content per cell. As a measure of the uncertainty associated with 

the procedure of calculating characteristic concentration of cells at each depth bin, we look at the 

uncertainty of the average cell concentration at each depth bin. We also calculate the uncertainty 

of the geometric mean of the estimates generated by our two methodologies for calculating the 

average cell concentration at each depth bin. We take the maximum uncertainty of these different 

values, which is ≈2.3-fold (link to full calculation). For the total volume of groundwater, Gleeson 

et al. (99) reports a range of 1.6-3×1022 mL of groundwater down to 2 km. This range represents 

the standard error range, so we estimate the 95% confidence interval for the volume of 

groundwater is ≈2-fold (link to full calculation). For the attached to unattached ratio, McMahon 

& Parnell report a range of 102-103 (the vast majority is attached). As McMahon & Parnell report 

a range for the ratio of attached to unattached cells, it is hard to quantify rigorously the 

uncertainty associated with this range. In our estimate we use the geometric mean of this ratio 

range, so we estimate the associated uncertainty of this parameter to be around 10-fold (link to 

full calculation). For the uncertainty of the carbon content of cells in the terrestrial deep 

subsurface, we rely on the uncertainty we projected for the carbon content of cells in subseafloor 

sediments (see marine deep subsurface prokaryote section), which is ≈2-fold (link to full 

calculation). Combining all these different sources of uncertainty, we calculate ≈14-fold 

uncertainty associated with the biomass of prokaryotes in the terrestrial deep subsurface (link to 
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full calculation). There are other sources of uncertainty for which we are not able to provide a 

quantitative estimate. The procedure of binning cell concentrations with depth and fitting an 

equation which extrapolates cell concentrations across all depths has uncertainty associated with 

it, but this uncertainty is hard to quantify. The uncertainty stemming from excluding the 

contribution from groundwater deeper than 2 km is also hard to quantify, as the cell concentration 

at those depths and the volume of groundwater are poorly characterized. Considering these 

additional uncertainties, we project the uncertainty of biomass of terrestrial prokaryotes to be 

about 20-fold. In addition to the uncertainty associated with the estimate of the total biomass of 

the terrestrial deep subsurface prokaryotes, estimating the fraction of biomass of archaea has 

uncertainty associated with it. We rely on the variability between different methodologies in the 

characteristic values for the fraction of archaea out of the population of prokaryotes in the 

terrestrial deep subsurface, and project an uncertainty of ≈17-fold for the fraction of archaea, and 

≈1.5-fold for the fraction of bacteria (link to full calculation). We assume that the distribution of 

cell sizes for terrestrial deep subsurface archaea is similar to that of the marine deep subsurface, 

and that the cell size of archaea and bacteria are similar (75, 86). Combining the uncertainty in 

the fraction of archaea with the uncertainty of the biomass of prokaryotes in the terrestrial deep 

subsurface, we get an uncertainty estimate of about 60-fold and 20-fold for the biomass of 

archaea and bacteria in the terrestrial deep subsurface, respectively (link to full calculation). 

  

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/terrestrial_deep_subsurface/arch_bac_ratio/terrestrial_deep_subsurface_arch_frac.html#Uncertainty-analysis
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Fungi 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

The estimate of the global fungal biomass is based on two contributions, one from soil fungi, and 

the second from plant associated mycorrhizal symbionts. We also discuss possible contributions 

from other environments such as the ocean or subsurface in a dedicated section below. 

 

Soil fungi 

In order to estimate the global soil fungal biomass, we start with the more general category of 

microbial biomass, which includes both fungi and other microbes such as prokaryotes. We then 

estimate the fraction of the total microbial biomass that is contributed by fungi. Estimates in 

Whitman et al. (25) for the total biomass of soil bacteria and archaea (not including soil fungi) are 

based on prokaryotic densities in forest soils and in other soils. For forests, a density of 4×107 

cells per gram soil in the top 1 meter was used, and a density of 106 cells per gram soil was used 

for 1-8 meters depth. For other soils a value of 2×109 cells per gram for the top 1 meter and 108 

cell per gram for 1-8 meters depth were used. Based on these numbers, Whitman arrived at an 

estimate of 26 Gt C for the soil prokaryote biomass. The estimate by Whitman et al. relies on very 

local data to extrapolate the total biomass of soil microbes. Other earlier estimates such as that of 

Wardle et al. (109) also rely on limited data compared to recent studies. Therefore, we chose to 

use more recent and comprehensive studies as the basis for our estimate of the total biomass of 

soil microbes.  

 

Recently two comprehensive studies by Xu et al. (110) and Serna-Chavez et al. (111) have 

estimated the total biomass of soil microbes. The first study, by Xu et al. (110), compiled a data 

set of 3422 measurements of soil microbial biomass densities from 14 different biomes. This data 

set contains different types of methods for measuring microbial biomass, where a large fraction of 

the data is based on either the fumigation extraction method (112) or the fumigation incubation 

method (113). Xu et al. assumed the data in their data set represent measurements of the top 30 

cm of the soil profile. To extrapolate globally the total biomass of soil microbes in the top 30 cm 

of the soil profile from the local samples, Xu et al. fit a linear model to predict soil microbial 

biomass based on globally available environmental parameters such as annual precipitation, 

annual temperature and soil organic carbon. The specific parameters of the model are described 

by Xu et al. (110). This extrapolation yielded an estimate for the total biomass of soil microbes in 

the top 30 cm of the soil profile. To extend the estimate from the top 30 cm to the top 1 meter of 

the soil profile, Xu et al. assumed the distribution of microbial biomass with depth follows the 

biomass density versus depth profile of root biomass (21). This assumption was supported by 

fitting a subset of the data in 5 biomes, for which depth dependence was available, against the 

distribution of root biomass in the respective biome. Xu et al. used a biome specific vertical root 

distribution to extrapolate the total microbial biomass in the top 1 meter of soils from the 

estimates of the total microbial biomass in the top 30 cm in each biome. The specific parameters 

for this extrapolation are described in Xu et al. In total, Xu et al. estimate the global biomass of 

soil microbes in the top 1 meter to be ≈23 Gt C. 

https://github.com/milo-lab/biomass_distribution/tree/master/fungi
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The second paper by Serna-Chavez et al. used 414 samples of microbial biomass density, 

measured using the fumigation extraction method (112). From those local samples, Serna-Chavez 

et al. extrapolated the global biomass of soil microbes by using a multivariate model explaining 

≈50% of the variance in microbial biomass density across samples. The model uses 

environmental parameters such as moisture availability, mean annual precipitation, evaporation 

and temperature, and soil pH and nitrogen to predict the microbial biomass at each location. 

Serna-Chavez et al. used global climate maps to derive the environmental parameters globally, 

and then used these parameters in combination with the model to predict soil microbial biomass 

globally. The specific parameters of the multivariate model are detailed in (111). Serna-Chavez et 

al. estimate a total biomass of soil microbes of ≈15 Gt C.  

 

To generate our best estimate for the total biomass of soil microbes, we use the geometric mean 

of the total estimates from Xu et al. and Serna-Chavez et al. which is ≈18 Gt C (link to full 

calculation). Both Xu el al. and Serna-Chavez et al. only consider microbial biomass in the top 1 

meter of soil. If indeed microbial biomass follows the trend of root biomass reported in Jackson et 

al., ≈98% of the total microbial biomass is found in the top 1 meter of soil (link to full 

calculation). Nevertheless, in the estimates made by Whitman, bacterial cells below 1-meter 

depth constitute ≈15-≈30% of the total amount of bacterial cells in soils. To take into account 

possible contribution of microbial biomass from layers deeper than 1 meter, we calculate the 

geometric mean of the fractions of biomass of microbes reported in Jackson et al. and Whitman et 

al. We thus add ≈7% to our estimate for the total biomass, and our best estimate for the total 

biomass of soil microbes is ≈20 Gt C (link to full calculation).  

 

To infer the fungal portion of the soil microbial biomass, we used estimates for the fraction of 

fungi out of the total microbial biomass (114). Joergensen & Wichern (114) estimated the fraction 

of fungal biomass out of the total soil microbial biomass using several independent methods. 

These methods include direct microscopic counts, and measurements of cell wall components 

which are characteristic to either fungi or bacteria (114). Joergensen & Wichern report the 

fraction of fungal biomass out of the total biomass of soil microbes from different studies 

conducted in four different soil types (arable, forest, grassland and litter), and using the above-

mentioned two different methods. To generate our best estimate for the fraction of fungal biomass 

out of the total biomass of soil microbes, we first calculated the geometric mean of all the studies 

conducted in a specific soil type and using a specific measurement method. Taking the geometric 

mean of values from different soil types but using the same method, we then calculated a 

characteristic value for each method. For our final best estimate for the fraction of fungal biomass 

out of the total biomass of soil microbes, we use the geometric mean of the characteristic values 

from the two methods. The geometric mean of the fraction of fungal biomass out of the total 

biomass of soil microbes is ≈60% (link to full calculation). This translates to an estimate of ≈12 

Gt C for the biomass of soil fungi (link to full calculation). This value is consistent with 

independent reports of the biomass of bacteria and fungi in the soil (115). 

 

As a consistency check for the estimate, we compare our results to other reports which measured 

the biomass density of soil fungi locally. A recent study (116) used several independent 

approaches and arrived at an estimate of ≈0.22-0.68 mg dry fungal mass per gram of soil in a 

https://paperpile.com/c/C72ZXm/ZouV
https://paperpile.com/c/C72ZXm/zb8j
https://milo-lab.github.io/biomass_distribution/fungi/soil_microbial_biomass/soil_microbial_biomass.html#Estimating-the-biomass-of-soil-microbes
https://milo-lab.github.io/biomass_distribution/fungi/soil_microbial_biomass/soil_microbial_biomass.html#Estimating-the-biomass-of-soil-microbes
https://milo-lab.github.io/biomass_distribution/fungi/soil_microbial_biomass/soil_microbial_biomass.html#Estimating-the-biomass-of-soil-microbes
https://paperpile.com/c/C72ZXm/QM3Q
https://paperpile.com/c/C72ZXm/QM3Q
https://paperpile.com/c/C72ZXm/QM3Q
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coniferous forest. This translates to ≈0.1-0.3 mg C per gram of soil. From the dataset in Xu et al. 

(110), coniferous forest soils contain ≈40 mmol C per kg soil of microbial biomass, which 

translate to ≈0.5 mg C microbial biomass per gram of soil. Thus, the mass fraction of fungi out of 

the total microbial biomass is estimated to be ≈0.2-0.6, in line with the results from Joergensen & 

Wichern (114).  

 

The estimate of 0.1-0.3 mg C per gram of soil also fits well with an analysis from experts in the 

field, which estimate ≈100 meters of fungal hyphae per gram of soil (117). Using a characteristic 

value for the diameter of fungal hyphae of ≈3 µm (118), 100 meters of fungal hyphae translates 

into a biovolume of ≈3×109 µm3 per gram. Assuming tissue density of ≈1 g cm-3, 70% water 

content and 50% carbon content of dry mass, we arrive at about 0.5 mg C per gram of soil, in the 

range of the estimates by Baldrian et al. (116). 

 

We now analyze the associated uncertainty of the estimate for the total biomass of soil fungi, 

which we report as a fold change factor from the mean representing a range akin to a 95% 

confidence interval of the estimate. As noted above, our estimate of the total biomass of fungi is 

generated by multiplying our best estimate for the total biomass of soil fungi by our best estimate 

for the fraction of fungi out of the total biomass of soil microbes. To generate our projection for 

the uncertainty of the biomass of fungi, we combine the uncertainties associated with both 

parameters. The estimate of the biomass of soil microbes is based on the geometric mean of the 

estimates made by Xu et al. (110) and Serna-Chavez et al. (111). Xu et al. do not report 

uncertainty ranges for the estimate of total biomass but do report 95% confidence intervals for the 

average microbial biomass densities in each biome. These ranges are all less than 1.5-fold from 

the average value. Serna-Chavez et al. (111) report 95% confidence interval for the total biomass 

estimate. This confidence interval is 0.007 Gt C, which is extremely small relative to the total 

estimate made by Serna-Chavez et al. of 14.6 Gt C. The origin of this confidence interval is not 

explicitly specified by Serna-Chavez et al., but most probably represents the 95% range of values 

generated by bootstrapping the parameters of the model which predicts the biomass density of 

soil microbes. The inter-study variability in the biomass of soil microbes can be calculated by 

comparing the total estimates provided by Xu et al. and Serna-Chavez et al. The 95% confidence 

interval for the inter-study variability of the total estimates is ≈1.6-fold (link to full calculation). 

As this confidence interval is larger than the uncertainties reported in either Xu et al. or Serna-

Chavez et al., we use it as the basis for our estimate of the uncertainty associated with the 

biomass of soil microbes. We also consider the impact of the uncertainty in the fraction of 

biomass of soil microbes in soil layers deeper than 1 meter on the uncertainty of the total biomass 

of soil microbes. We calculate the intra-study uncertainty in the values for the fraction of biomass 

in soil layers deeper than 1 meter reported in Jackson et al. and Whitman et al. as well as the 

uncertainty of the mean fraction between the estimates of Jackson et al. and Whitman et al. 

Overall, the uncertainty of the fraction of biomass of microbes in soil layers deeper than 1 meter 

results in an ≈1.3-fold uncertainty in the biomass of soil microbes (link to full calculation). 

Combining the uncertainty of the total biomass of soil microbes in the top meter and the 

uncertainty of the fraction of biomass of soil microbes in soil layers deeper than 1 meter, we 

estimate a total uncertainty of ≈1.7-fold for the biomass of soil microbes (link to full calculation). 
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There are several sources of uncertainty that are hard to quantify but increase the total uncertainty 

associated with the total biomass of soil microbes. First, the two studies reporting the total 

biomass of soil microbes are not completely independent in terms of the data sets and methods for 

measuring microbial biomass they use, and thus the interstudy variability does not represent 

variability between two completely independent studies. Second, the estimates provided in Xu et 

al. and Serna-Chavez et al. are based on models predicting the biomass density of soil microbes. 

The models explain only a part of variability in the locally measured biomass density of soil 

microbes. Remaining sources of variability not explained by the model introduce additional 

uncertainty to the estimates based on the model. Additionally, both in Xu et al. and in Serna-

Chavez et al., the total biomass of soil microbes is extrapolated to a depth of 1 meter by using 

different empirical equations. It is not clear what is the uncertainty associated with using such 

equations to extrapolate the biomass of soil microbes to deeper soil layers. Finally, the 

uncertainty regarding possible contribution of microbes from layers deeper than 1 meter is also 

hard to quantify. Thus, to take into consideration these extra possible sources of uncertainty, even 

if not in full, we estimate an uncertainty of ≈2-fold associated with the total biomass of soil 

microbes (link to full calculation). 

 

The estimate of the fraction of fungal biomass out of the total biomass of soil microbes is based 

on combining two independent methods, used to estimate the biomass fraction of fungi in four 

different soil types. The maximal 95% confidence interval of the mean fraction reported from 

different studies in the same soil type and using the same method is about 3-fold (link to full 

calculation). The 95% confidence interval of the biomass fraction of fungi averaged across 

different soil types using the same method is about 1.6-fold (link to full calculation). The 95% 

confidence interval of the biomass fraction of fungi averaged across different measurement 

methods is ≈2-fold (link to full calculation). Therefore, we chose to use the largest uncertainty 

and estimate ≈3-fold uncertainty associated with the fraction of fungal biomass out of the total 

biomass of soil microbes. Combining these two uncertainties leads us to project that the 

uncertainty of the estimate of the biomass of soil fungi is about 3-fold (link to full calculation). 

 

Next, we set out to estimate the biomass of mycorrhizal fungi, which are symbionts of plants. 

Mycorrhiza are generally classified into two main types, arbuscular mycorrhiza, and 

ectomycorrhiza. Arbuscular mycorrhiza are fungal symbionts that penetrate the cell wall of their 

host cells. Plants associated with this type of fungi predominate in deserts, grasslands, shrublands, 

and tropical forest ecosystems (119). Ectomycorrhiza are also fungal plant symbionts, but they do 

not penetrate the cell walls of their hosts. They are found mainly in boreal and many temperate 

forests (for example, those dominated by Pinus; 120). 

  

Ectomycorrhiza 

For the calculation of ectomycorrhizal biomass, we rely on two recent studies that estimated the 

ectomycorrhizal biomass of Norway spruce dominated forests (121, 122). Both studies use 

estimates of the total fine-root biomass densities (most ectomycorrhizal fungi are located on fine-

roots) in boreal forests, in conjunction with the fraction of biomass that ectomycorrhizal fungi 

contribute to fine-root biomass. Stögmann et al. (121) estimated the fraction of biomass 

contributed by ectomycorrhizal fungi to be ≈30%, based on microscopy and 3D reconstruction of 
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root tips. This value is in line with the reported ranges in the literature. The study by Stögmann et 

al. (121) estimates ≈18 g C m-2 (assuming 50% carbon content). This estimate takes into account 

only the top 5 cm of soil, and Stögmann et al. (121) state that the fungal biomass could increase 

significantly if deeper soil layers are included. Comparing the fine-root biomass measured by 

Stögmann et al. (121) to published censuses of fine-root biomass in boreal forests (21, 123), the 

values by Stögmann are about 6-fold larger than the characteristic fine-root biomass densities 

reported. Other studies have estimated the ectomycorrhiza biomass in an Estonian Norway spruce 

forest at a much lower ≈3 g C m-2 (122), even while extending to deeper soil depth. Ostonen et al. 

(122) rely on a lower biomass fraction of fungi of ≈18%, with a fine-root biomass density 

estimate that is comparable to values reported in the literature. To estimate the total biomass 

density of ectomycorrhizal fungi, we correct the ectomycorrhizal fungi biomass density estimates 

by Stögmann et al. (121) and Ostonen et al. (122) for the characteristic fine-root biomass 

densities, and for the depth profile of root biomass from Jackson et al. (124). We get that the 

corrected ectomycorrhizal fungi biomass density from Stögmann et al. (121) is ≈12 g C m-2 (the 

original 18 g C m-2 corrected for 6-fold less fine-root biomass and for the fact that 75% of the root 

biomass is located below 5 cm). Stögmann et al. (121) and Ostonen et al. (122) measured 

ectomycorrhizal fungi biomass down to 40 cm depth, so correcting for the fine-root biomass 

depth profile, we get a total of ≈6 g C m-2. As the biomass densities of fine-roots in Stögmann et 

al. (121) and Ostonen et al. (122) are close to the characteristic densities in the literature, no 

correction for the fine-root biomass densities was needed. Assuming that these values are 

characteristic of boreal and temperate forests (values in tropical forests are known to be much 

lower), we multiply it by the boreal and temperate global forest area of ≈25×1012 m2 (23), and get 

an estimate of ≈0.15-0.3 Gt C. We thus estimate that the total ectomycorrhizal fungi biomass is 

roughly ≈0.2 Gt C. We note that this estimate is only a rough estimate of the global 

ectomycorrhiza biomass, as it is based on very local sampling to extrapolate to other boreal and 

temperate forests. Nevertheless, fine-root densities used for the estimate are the best available 

representatives of boreal forests, and the biomass fraction of ectomycorrhizal fungi out of fine-

roots seem to remain between ≈20%-40% in different tree species (121). In calculating the 

ectomycorrhiza biomass, we do not take into account extramatrical mycelia - the collection of 

filamentous fungal hyphae emanating from ectomycorrhizas. As these mycelia are emanating 

from the roots of plants, they have a higher probability of being accounted for in the independent 

estimate of soil microbial biomass. 

 

The main parameters affecting the estimate of the biomass of ectomycorrhizal fungi are the 

biomass density of fine-roots and the mass fraction of ectomycorrhizal fungi out of the fine-root 

biomass. The uncertainty in the biomass fraction of ectomycorrhizal fungi between different tree 

species is around ≈1.3-fold (125). The estimate of the fine-root biomass density has a typical 

uncertainty of ≈1.3-fold (124). Therefore, the combined uncertainty of the estimate is better than 

2-fold. When using the estimates from both papers (as updated above), the two values we get for 

the biomass density of ectomycorrhiza is closer than 2-fold of each other, which suggests less 

than 2-fold uncertainty. While these are the reported elements of uncertainty in the available 

papers we could find, we surmise that systematic biases can arise from the very limited 

geographic sampling performed to date, and we thus evaluate the uncertainty to rather be better 

than an order of magnitude. 

https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/mJcI+MS6d
https://paperpile.com/c/C72ZXm/kIyg
https://paperpile.com/c/C72ZXm/kIyg
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/kIyg
https://paperpile.com/c/C72ZXm/2JBH
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/kIyg
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/kIyg
https://paperpile.com/c/C72ZXm/hzFN
https://paperpile.com/c/C72ZXm/U4QK
https://paperpile.com/c/C72ZXm/KHZtv
https://paperpile.com/c/C72ZXm/2JBH


27 

  

Arbuscular mycorrhiza 

For the calculation of arbuscular mycorrhiza biomass, we use a study which estimates the global 

arbuscular mycorrhiza biomass at 0.7 Gt C (assuming 50% carbon content; 126). The estimate is 

based on using previous estimates of fine-root length per unit area in different biomes (21). 

Treseder & Alison (126) total fine-root length to volume by using estimates of the diameter of 

fine-roots in different biomes. From the total volume of fine-roots, Treseder & Alison (126) use 

an estimate of the fraction of the length of the fine-root covered with arbuscular mycorrhizal 

fungi. Arbuscular mycorrhizal fungi constitute only a fraction of the volume of the fine-root, and 

Treseder & Alison (126) use an estimate of this fraction to convert the total volume of arbuscular 

mycorrhizal fungi covered fine-root to the volume of the fungi alone. Treseder & Alison (126) 

then convert this volume to biomass by using estimates of the fungal tissue density. Treseder & 

Alison (126) only considered fungi from the 10-top cm of the soil. To account for biomass in 

lower soil layers, we used the depth profile of roots in different biomes (21) to calculate the 

fraction of total root biomass that reside in the top 10 cm. We then corrected our biomass 

estimates to account for these extra roots in lower depths, which brings the total estimate from 0.7 

Gt C to ≈2 Gt C. This is probably an overestimate of the biomass of arbuscular mycorrhiza as the 

fraction of roots covered with fungi decreases with depth (127). As we discuss above, the main 

source we base our estimate of the biomass of arbuscular mycorrhizal fungi upon is the study by 

Treseder & Alison (126). This was recommended by experts in the field for estimation of 

arbuscular mycorrhizal fungi abundance (117). Correcting the original estimate of arbuscular 

mycorrhizal fungi made by Treseder & Alison (126) for the dry mass density used, as well as for 

the characteristic radii of fine-roots, we estimate about ≈0.15 Gt C. 

 

In establishing the uncertainty, we focus on several parameters that affect the estimate of the 

biomass of arbuscular fungi biomass. The first is the total length of fine-roots per unit area. This 

parameter has an associated uncertainty of ≈1.3-fold (124). A second parameter affecting the 

estimate is the fraction of fine-root length covered by arbuscular mycorrhizal fungi. This fraction 

has an uncertainty of ≈1.6-fold (126). The diameter of the fine-roots will influence the estimated 

volume of fine-roots and has an uncertainty of ≈1.2-fold (124). The fraction of the volume of 

fine-root colonized by arbuscular mycorrhizal fungi will also affect the final estimate and has an 

uncertainty of ≈1.1-fold. Finally, the tissue density will affect the conversion between fungal 

volume and biomass and has an uncertainty of ≈1.5-fold. Overall, we project the uncertainty of 

the estimate of biomass of arbuscular mycorrhizal fungi to be about 2-fold. 

  

Marine fungi 

To estimate the total biomass of marine fungi, we consider several environments in which fungi 

reside: planktonic fungi in the epipelagic layer of the ocean (between 0-200 meters in depth), the 

planktonic fungi in the deep-sea (below 200 meters) and particle-attached fungi. For planktonic 

fungi in the epipelagic layer, the DNA copy number of planktonic fungi was measured using 

qPCR to be about ≈10% of the prokaryotic DNA copy number at the Pacific Warm Pool (128). 

As an independent method for estimating the ratio between the biomass of fungi and prokaryotes, 

we rely on direct counts of fungal cells and prokaryotes, along with their biovolumes, at the 
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coastal upwelling ecosystem off central Chile (129) The mean ratio between the biomass of 

planktonic fungi and prokaryotes was ≈25% (link to full calculation). As our best estimate for the 

total biomass of marine fungi in the epipelagic layer we use the geometric mean of the estimates 

based on qPCR and direct counts, which is ≈20%. As we estimate ≈0.4 Gt C of epipelagic 

prokaryotes, this translates to ≈0.07 Gt C if extrapolated on a global scale. This is inline with 

recent metabarcoding survey of eukaryotic diversity in the sunlit ocean has not identified fungi as 

a major constituent of the plankton community (130). In the deep ocean, recent studies have 

identified fungi as contributing ≈15% of the total 18S rDNA of microbial eukaryotes (131). 

However, the total biomass of these deep-sea microbial eukaryotes is estimated at ≈0.1 Gt C (see 

marine protists section; 132), so we estimate ≈0.015 Gt C of deep-sea planktonic fungi. However, 

these studies were mainly focused on measuring the biomass of heterotrophic protists, and thus 

they might capture only unicellular fungi and not filamentous fungi. To take into account the 

possibility of deep-sea filamentous fungi, we extend our estimate of the ratio between planktonic 

fungi and prokaryotes to the mesopelagic and bathypelagic realms, which results in an estimate of 

a total of ≈0.17 Gt C of deep-sea fungi (link to full calculation). As our best estimate of the 

biomass of planktonic deep-sea fungi, we use the geometric mean of the estimates we generated 

based on 18S rDNA sequencing and based on applying the ratio of fungal and prokaryotic 

biomass from the epipelagic layer to the mesopelagic and bathypelagic layers. Thus, our best 

estimate of the biomass of deep-sea planktonic fungi is ≈0.05 Gt C.  

 

For particle-attached fungi, a recent study by Bochdansky et al. (50) has measured the relative 

biomass of particle-attached fungi and prokaryotes in the bathypelagic layer. We use the values 

reported in Bochdansky et al. to estimate that the biomass of particle-attached fungi is about 70% 

of particle-attached prokaryotes in the bathypelagic layer. We could not find estimates for the 

ratio between the biomass of particle-attached fungi and prokaryotes in shallower layers of the 

ocean, and thus we apply the ratio measured in the bathypelagic layer across the entire volume of 

the ocean. We arrive at an estimate ≈0.3 Gt C of particle-attached prokaryotes, so we estimate 

≈0.2 Gt C of particle-attached fungi (link to full calculation). Overall, we estimate that the 

biomass of marine fungi is ≈0.3 Gt C (link to full calculation), which is small compared to our 

estimate of ≈12 Gt C of soil fungi. A general caveat associated with estimating the biomass of 

marine fungi is that this group has been understudied due to accessibility challenges, which can 

lead to underestimates in their biomass contribution (for example due to non-optimal sampling 

techniques). As the data regarding marine fungi is scarce, we chose to project an uncertainty of an 

order of magnitude for our estimate of the total biomass of marine fungi. 

 

Deep subsurface fungi 

Another contribution to the global biomass of fungi comes from terrestrial and marine deep 

subsurface environments. The biomass of fungi in both environments has not been extensively 

studied. For the marine deep subsurface, biomass appears to be very low, as few fungal cells have 

been observed in subsurface samples (133). In some sites, fungi account for 3-20% of the total 

metatranscriptomic reads (134), but there is no strongly supported quantitative connection 

between the fraction of total reads represented by fungi and their relative biomass. Ribosomal 

DNA (rDNA) copies of eukaryotes appear to be about 2 orders of magnitude lower than those of 
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prokaryotes in the marine deep subsurface (135), even though rDNA copy number may not 

predict biomass reliably. For the terrestrial deep subsurface, only a handful of measurements have 

been conducted, using either culture-based or culture-independent methods (136, 137). These 

studies have suggested that the abundance of fungal cells is five to six orders of magnitude lower 

than the abundance of prokaryotes. Even when accounting for the larger carbon content of fungal 

cells, the biomass of fungi based on these measurements will still be much lower than that of 

prokaryotes. Other studies based on hybridization of oligonucleotide probes to rRNA extracted 

for aquifers have suggested eukaryotic sequences to account for ≈10% of the total rRNA. It is not 

clear, however, if this rRNA is fungal in origin, and if this type of measurement is quantitatively 

correlated to the relative biomass of eukaryotes.  

 

Recent sequencing-based studies report diverse communities of active fungi in the terrestrial deep 

subsurface (138), but these studies do not report absolute densities of fungal biomass in these 

environments. Fungi might also be present in the oceanic crust, but at present we could not find 

reliable sampling of their abundance in this environment. Due to the extreme scarcity of data on 

the abundance of fungi in the terrestrial deep subsurface and oceanic crust, we do not include 

them in the current analysis. We highlight this knowledge gap in the discussion section of the 

paper main text. 

  

Total fungal biomass 

Summing the estimates for the biomass of soil fungi, ectomycorrhizal fungi, arbuscular fungi, and 

marine and deep subsurface fungi we get a total of ≈12 Gt C (link to full calculation). One caveat 

of combining these estimates together is the risk of double counting mycorrhizal biomass. The 

soil microbial biomass is based on bulk soil samples. These bulk samples contain in them 

mycorrhiza from nearby plants. Therefore, some of the mycorrhizal biomass will be counted 

twice in the soil fungi section and the relevant mycorrhiza section. Because the global biomass of 

ectomycorrhiza and arbuscular mycorrhiza are small relative to the total soil fungal biomass, even 

a hypothetical double counting would not affect our results significantly. In total, we estimate ≈12 

Gt C of fungi. 

Active and inactive microbial biomass 

An important point to take into account when estimating the total biomass of microbes is their 

high metabolic flexibility. Microbial cells can be found in various physiological states. We are 

used to thinking of cells as a biological entity which is dividing vegetatively, with a range of 

growth rates governed by the environmental conditions. Under starvation conditions, microbes 

can also sustain their viability without increasing their biomass. These types of cells do not have 

an associated growth rate but are turning over their biomass (and hence carbon) at a very slow 

rate (139). An alternative strategy to cope with harsh environmental conditions is to enter a 

physiological state of dormancy, in which the metabolic activity is further extremely reduced. 

Dormancy usually requires cells to invest resources into resting structures (such as spores) and 

the machinery that is needed for transitioning into and out of a dormant state (140). Finally, cells 

can also be in the process of cell death, with a varying amount of cellular structures intact 

(ribosomes, cell membrane etc.).  
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Different techniques used to measure the biomass of microbes might include or exclude different 

types of physiological states from the tally. In theory, we would like to include in our account all 

physiological states except dead cells. In most of the studies we base our estimates upon, there is 

no explicit discussion of the type of physiological states which the assay accounts for. We 

proceed to characterize to the best of our knowledge the type of physiological states included in 

our estimates in each environment.  

 

A common practice to distinguish between cells which are alive or dead is to compare the number 

of cells stained with a DNA dye, which represents the total number of cells, with the number of 

cells that are stained with a fluorescent probe for 16S rRNA (using FISH or similar methods), 

which represents the population of cells containing ribosomes. Based on this type of assay, people 

have characterized the number of cells in a dormant state out of the total population (140). A 

recent meta-analysis by Lloyd et al. (28) has characterized the fraction of cells containing 

ribosomes out of the total population of cells in the marine environment and in subseafloor 

sediments. Lloyd et al. found that in the marine environment around ≈80% of bacteria stained for 

DNA also stained with 16S rRNA probes. As our estimates for the biomass of marine bacteria 

and archaea is based on counting cell numbers after DNA stains, this means that the actual 

number of living cells might be about 20% lower than our estimate.  

 

For the marine deep subsurface environment, Lloyd et al. found that the fraction of cells stained 

with 16S rRNA probes is highly dependent on the technical parameters of the protocol. In studies 

which use best practice protocol parameters (using CARD-FISH and permeabilizing cells with 

proteinase K), the fraction of cells stained with a 16S rRNA probe was ≈84%. These values are in 

line with an independent study which measured the fraction of cells in subseafloor sediments 

which are able to assimilate labeled carbon and nitrogen compounds (141). This means that our 

estimates for the total number of cells in the marine deep subsurface, which are based on DNA 

stains, might similarly overestimate the actual number of cells by about 20%. Another lesson 

from the meta-analysis by Lloyd et al. is that measuring a low fraction of cells which are stained 

by 16S rRNA probes does not necessarily imply that a large fraction of the cells is dormant or 

dead but could also imply that there might be a technical issue with the parameters used for the 

assay. In other environments, such as soils and the terrestrial deep subsurface, no comprehensive 

studies were conducted. A study using CARD-FISH in different soils has found the fraction of 

cells stained with a 16S rRNA probe ranged between 51-94% of the total cell count, similar to 

values in the marine environment (70). In order to have a fair comparison between the different 

environments, we chose to report estimates based on the total number of cells stained by a DNA 

stain.  

 

A physiological state which is likely to be underrepresented in our data is spores. Specific types 

of spores, such as endospores, are unlikely to be stained by fluorescent DNA dyes or by 16S 

rRNA staining techniques (142). In addition, spores could also be insensitive to the chloroform 

fumigation extraction method, which is used to estimate the biomass of soil microbes (143). In 

some environments, such as in subseafloor sediments, endospores might contribute a significant 

fraction of biomass, similar to that of non-spore cells (142). However, due to scarcity of data 

regarding the abundance of spores in all environments, we could not comprehensively include 
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spores as part of our analysis. This is not to say that spores are completely unrepresented, as there 

are many types of spores, some of which might be amenable to the measurement techniques on 

which we based our estimates for the total biomass of microbes. For the same reason we could 

not include in this analysis encysted forms of protists, which are akin to the spores of bacteria and 

archaea. We hope further research will clarify the relative biomass contribution from the different 

morphological states of microbes. 

Annelids 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Annelids are a phylum of animals containing both marine and terrestrial species. For estimating 

the terrestrial annelid biomass, we followed a previous study (144) that chose as the dominant 

contributions the terrestrial earthworms and the worm family Enchytraeidae. We base our 

estimate on their values for the density of annelid biomass in the soil (144). The estimate in Fierer 

et al. (144) is based on combining data for different locations. For some locations there are direct 

biomass measurements and for other locations biomass is estimated based on conversion from 

number of individuals to biomass (based on size or mass) to give the biomass per unit area in 

each biome. We multiplied these biomass values in Fierer et al. (144) by the land area of each 

biome to reach the final estimate. This estimate does not include earthworm biomass in leaf litter 

(see litter section below). The data also does not contain depth data, but since most soil faunal 

biomass is likely to be restricted to the top 15 cm of soil (145), this is unlikely to lead to a 

significant underestimation of faunal biomass in most soils, although desert soils may be an 

exception. Fierer et al. (144), give the mean biomass densities for each biome in g C m-2, as well 

as the median biomass densities. To estimate the global biomass of annelids, we calculate a total 

estimate based independently on the mean and then separately on the median biomass densities. 

In each estimate we multiply the mean (or median) biomass density for each biome by the total 

area of that biome (link to full calculation). Our best estimate is the geometric mean of the 

estimate based on mean biomass densities and the estimate based on median biomass densities. 

Two important biomes are missing from the analysis made by Fierer et al. (144), namely tropical 

grasslands (savannas) and crops. We compiled estimates for the biomass density in each of the 

missing biomes by performing a literature survey (146–150). In tropical grasslands, two unique 

environments are present, each with its own characteristic biomass density. The first is natural 

savanna, and the second is pasture. As we do not know the division of area between the area 

covered by natural savannas and pastures, we tested the sensitivity of our final estimate to this 

parameter. The final estimate varied between ≈0.05 Gt C and ≈0.4 Gt C. Therefore, we chose as 

our best estimate ≈0.2 Gt C (link to full calculation). It is worth noting that estimates for different 

biomes have different sampling sizes and therefore different uncertainties associated with them. 

We are aware that biomass densities with low certainty may introduce biases into the global 

estimate. As a sanity check on this result, a recent paper (117) has produced approximate 

estimates for the abundance of various taxa in the soil by consulting with experts for each taxon. 

The study reports an estimate of 300 individual earthworms per m2. Combining this estimate with 

the average biomass of an individual earthworm used in Fierer et al. (144) which is 5 mg C, we 
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get ≈1.5 g C m-2. This value lies in the range of reported biomass densities in (144) of 0.2-5 g C 

m-2, thus strengthening our confidence in the estimate. 

 

Annelids are also present in marine environments. Polychaetes are present in both pelagic and 

benthic environments. Pelagic polychaetes are part of the macrozooplankton. Analysis of 

macrozooplankton biomass is detailed in the marine arthropod section. The analysis shows that 

the main fractions of macrozooplankton biomass are contributed by cnidarians, molluscs and 

arthropods. Therefore, the biomass contribution from pelagic annelids will probably not 

dramatically affect our estimate. We could not find any study on the contribution of annelids to 

the total benthic biomass, and therefore they are not added here. For an upper limit and further 

discussion of benthic biomass see the “Other phyla” section. 

Nematodes 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Nematodes are also an animal phylum containing both marine and terrestrial species. To estimate 

terrestrial nematode biomass, we use the same study as for estimating annelid biomass (144). As 

stated in the annelid section, this study estimates the global distribution of nematode biomass in 

the soil. The estimate in Fierer et al. (144) is based on combining data for different location. For 

some locations, there are direct biomass measurements and for other locations biomass is 

estimated based on conversion from number of individuals to biomass (based on size or mass) to 

give the biomass per unit area in each biome. We multiplied the values in Fierer et al. (144) by 

the land area of each biome to reach the final estimate. This estimate doesn’t include nematode 

biomass in leaf litter (see litter section below). The data also doesn’t contain depth data, but since 

most soil faunal biomass is likely to be restricted to the top 15 cm on the soil profile (145), this is 

unlikely to lead to a significant underestimation of faunal biomass in most soils, although desert 

soils may be an exception. Fierer et al. (144), give the mean biomass densities for each biome in g 

C m-2, as well as the median biomass densities. To estimate the global biomass of nematodes, we 

calculate a total estimate based separately on the mean and median biomass densities by 

multiplying the mean (or median) biomass density for each biome by the total area of that biome. 

We use as best estimate the geometric mean of the estimate based on mean biomass densities and 

the estimate based on median biomass densities. Two important biomes are missing from the 

analysis made by Fierer et al. (144), namely tropical grasslands (savannas) and crops. We could 

not find reliable sources for the biomass densities of nematodes in those environments, and thus 

we chose to extrapolate the biomass density we got for the other biomes. We get an estimate of 

≈0.006 Gt C (link to full calculation). It is worth noting that estimates for different biomes have 

different sampling sizes and therefore different certainty associated with them. We are aware that 

biomass densities with low certainty may introduce biases into the global estimate. To compare 

this estimate with the contribution of marine nematodes, we use a study which estimates the total 

seafloor biomass, and the contribution of different classes of organisms to the total biomass (87). 

Wei et al. (87) estimate a global biomass of 0.1 Gt C for the seafloor, with ≈13% contributed by 

meiofauna, which includes, among other organisms, nematodes. Nematodes are a major 
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constituent of the meiofauna (151, 152), so we estimate marine benthic nematode biomass at 

≈0.01 Gt C (link to full calculation). This estimate does not take into account nematode biomass 

in environments such as seamounts and submarine canyons, because there is very little 

knowledge of the biomass of nematodes in those locations. An upper limit and further discussion 

of benthic biomass is given in the “Other phyla” section. Nematodes have also been found in the 

terrestrial deep subsurface (153), however their population densities are significantly lower than 

those of prokaryotes in the terrestrial deep subsurface. For every nematode, there are 1010-1012 

prokaryotes (153). Nematodes in the terrestrial subsurface have a carbon content of ≈10-8 g C 

(153), which is ~106 times larger than prokaryotes. Thus, the biomass of terrestrial deep 

subsurface prokaryotes is roughly 105 times that of nematodes. We thus estimate that the total 

biomass of nematodes in the terrestrial subsurface is ~0.001 Gt C, which is negligible compared 

to the biomass of soil and benthic nematodes. In summary, the global nematode biomass is 

estimated at ≈0.02 Gt C. As a sanity check on this result, a recent paper (117) has produced 

approximate estimates for the abundance of various taxa in the soil, consulting with experts for 

each taxon. They estimate 105-107 individual nematodes per m2. Combining this estimate with the 

average biomass of an individual earthworm used in Fierer et al. (144), which is 0.05 µg C, we 

get ≈0.05 g C m-2. This value lies in the range of reported biomass densities in Fierer et al. (144) 

of 0.01-0.3 g C m-2, thus strengthening our confidence in the estimate. 

Litter microbes and fauna 

Our estimates for the biomass of soil microbes and fauna do not take into account the biomass of 

the respective taxa in litter. In this section we give a crude estimate of the total biomass of litter 

microbes and fauna (prokaryotes, protists, fungi, nematode, annelids, and arthropods). Most 

studies report the abundance of litter flora and fauna per unit mass of litter. In order to estimate 

the total abundance of the litter flora and fauna, we need to know the total mass of litter. 

Estimates based on direct field observations put the global pool of dry weight from plant litter at 

about ≈80 Gt C (7, 154). For microbes (bacteria, archaea, fungi and protists), Recent studies 

estimate the microbial biomass in litter to be less than 1% of the total organic carbon mass in 

litter (155–158). This means that the amount of microbial biomass in litter will not surpass 1 Gt 

C, which is less than 10% of our estimate for the total biomass of soil microbes (see section on 

soil fungi and soil bacteria and archaea). Thus, the contribution from litter microbes will likely 

not affect dramatically our estimates for the total biomass of soil prokaryotes, protists or fungi.  

 

Our estimates of the total biomass of annelids and nematodes is based on data collected in Fierer 

et al. (144). Fierer et al. state that many of the data on the biomass of soil fauna may contain 

measurements of both the soil and litter communities. This means that our estimate includes, even 

if to a small degree, also the biomass contribution of litter nematodes and annelids. We argue that 

the biomass contribution from litter nematodes and annelids not accounted for by our estimates 

will likely not change the final estimates. To back this claim, we use the total mass of litter 

worldwide. If we divide the total biomass of the litter pool by the total ice-free terrestrial area, 

which is ≈1.3×1014, we arrive at an estimate of ≈0.5 kg m-2. Most of the biomass of nematodes 

and annelids is found in the top ≈10-20 cm of soil (144), which weighs about ≈200 kg m-2, 

assuming soil bulk density of ≈1.3 g cm3. This means that the total weight of soil is ≈400-fold 
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larger than the weight of litter (litter weighs ≈0.5 kg m-2, and the relevant soil section weighs 

≈200 kg m-2) and thus in order to have a significant contribution of biomass from litter, 

abundances in litter should be about two orders of magnitude larger than in soil. This does not 

seem to be the case for nematodes (159), as well as for annelids (160). For arthropods, we already 

incorporated the biomass of litter arthropods in our estimates. 

Chordates 

Fish 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Global fish biomass was historically estimated based on trawling experiments and primary 

productivity coupled to models of trophic transfer efficiencies (161–163). These estimates put 

global fish biomass at around ≈0.3 Gt C (2 Gt fresh weight), with half of fish biomass contributed 

by mesopelagic fish (fish that live at 200-1000 m depth; 161), which corresponds well with 

trawling based estimates of mesopelagic fish biomass (163). In 2010, an expedition named the 

Malaspina explored, among other goals, the biodiversity of the deep ocean. As part of this effort, 

a recent study (164) has used acoustic observations from the Malaspina campaign to estimate the 

global mesopelagic biomass. Mesopelagic fish reflect sonar signals and they are a strong feature 

visible all across the oceans. An estimate of the mesopelagic biomass is based on measurement of 

acoustic backscatter from the deep scattering layer, combined with calibrations of for the strength 

of reflection of acoustic signals from a single mesopelagic fish, termed target strength. The study 

by Irigoien et al. (164) measures the total scattering along the course of the campaign and finds a 

correlation between this scattering strength and the local net primary productivity (NPP). Then, 

using estimates of NPP across the ocean, Irigoien et al. (164) extrapolates the total scatter across 

the entire ocean. The specific parameters of the correlation between NPP and scattering strength 

are given in detail in (164). Irigoien et al. convert this total scatter to biomass by using relations 

of the target strength per unit biomass of a single fish. The conclusion of the analysis by Irigoien 

et al. puts mesopelagic biomass at ≈1.5 Gt C, dominating all other fish populations. Independent 

estimates of the total backscatter from the deep scattering layer (165) are about ≈40% lower than 

the estimate by Irigoien et al. (164). We thus update the original estimate by Irigoin et al. by 

using the geometric mean of the total backscatter estimated by Irigoien et al. and Proud et al. 

(165). To convert the total backscatter to fish biomass, we relied on the data in Irigoien et al. for 

the target strength of mesopelagic fish. The measurements of target strength can be divided to two 

main categories, fish with and without a swim bladder. We use the mean target strength for each 

group (with and without swim bladder). We assume the population of mesopelagic fish is divided 

equally (for lack of better data) between fish with and without swim bladder and calculate a mean 

population target strength. Combining the total backscatter and the mean target strength we 

estimate a total biomass of ≈1.8 Gt C for mesopelagic fish (link to full calculation). As we discuss 

below, estimating biomass based on acoustic scattering has several caveats which might bias the 

results. The mesopelagic fish community is highly diverse, and thus using a “characteristic” 

target strength per unit biomass inserts significant uncertainty to the final estimate (166).  
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Nevertheless, previous estimates based on trawling are known to underestimate mesopelagic fish 

biomass due to escapes and avoidance of trawls (167). While the recent estimate by Irigoien et al. 

(164) is highly divergent from previous estimates, we rely as in other cases on the geometric 

mean to give a robust estimator of global biomass of fish. Previous trawling-based estimates put 

mesopelagic fish biomass at ≈0.15 Gt C (163). The geometric mean of the two estimates is ≈0.5 

Gt C (link to full calculation). We add to this geometric mean the contribution from other group 

of fish of ≈0.15 Gt C (161), to yield a final estimate of ≈0.7 Gt C (link to full calculation). 

 

We now analyze the associated uncertainty of the estimate for the total biomass of fish, which we 

report as a fold change factor from the mean, representing a range akin to a 95% confidence 

interval of the estimate. We start by analyzing the associated uncertainty of the estimate based on 

acoustic measurements. The main parameters contributing to the uncertainty are the total scatter 

that is extrapolated globally, and the target strength used to convert this scatter to biomass. The 

correlation between the local NPP and the local scattering strength, explains ≈60% of the 

variance in the acoustic scattering. Different kinds of regression between local NPP and scattering 

coefficients give variability of ≈1.2-fold in the total backscatter of the deep scattering layer (link 

to full calculation). The inter-study uncertainty associated with the total backscatter is ≈1.7-fold 

(link to full calculation). The measurements of target strength can be divided to two main 

categories, fish with and without a swim bladder. The scattering of each group has characteristic 

uncertainty of ≈50%. We modelled different population compositions between the two groups to 

project the uncertainty associated with the unknown distribution of mesopelagic fish with and 

without swim bladder. We assume fish with swim bladder account for at least 20% of the 

population by mass, which is a reasonable assumption given that both variants appear in most 

species (164). Under this assumption variation in the relative abundance of fish with and without 

swim bladder will change the total estimate for the biomass of mesopelagic fish by ≈8-fold (link 

to full calculation). As we could not find any rigorous analysis of the composition of mesopelagic 

fish, we use this range as the uncertainty associated with the distribution of fish with and without 

swim bladder. Combining these sources of uncertainty, we project that the uncertainty associated 

with acoustics-based estimate for the biomass of mesopelagic fish is ≈10-fold (link to full 

calculation). Another uncertainty to consider is the fraction of the backscatter resulting from 

mesopelagic fish biomass rather than other organisms such as crustaceans, and other members of 

mesopelagic plankton. Previous reports suggest that most of the backscatter is originating from 

mesopelagic fish (168, 169), however estimating the uncertainty associated with this aspect is 

difficult. Additional sources of uncertainty, which are also hard to quantify, stem from the 

population structure of mesopelagic fish. Small fish which are smaller than the wavelength of the 

ultrasonic sonar signal will have lower backscatter due to Rayleigh scattering, and thus this type 

of acoustic estimate might underestimate the total biomass. Conversely, because acoustic models 

of the relation between backscattering and fish length are not completely linear (166), a change in 

the size spectrum of the mesopelagic fish community might influence the backscatter. Finally, 

possible effects of resonance, mainly from swim bladders, might affect the estimate, even though 

Irigoien et al. (164) gives evidence that such an effect is probably small. Our estimate for the 

global biomass of mesopelagic fish is based on a geometric mean between the acoustics-based 

estimate by Irigoien et al. (164) and previous estimates (161–163). Previous estimates based on 

trawling, which put mesopelagic fish biomass at ≈0.15 Gt C, represent an underestimate of the 
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global biomass of mesopelagic fish. Conversely, higher estimates by Irigoien et al. (164) of ≈5 Gt 

C (assuming most of the population contains fish without swim bladder, which have low target 

strength) is probably an overestimate. The uncertainty in the estimate of the total mesopelagic 

fish biomass between the two independent methods is ≈10-fold (link to full calculation), which is 

similar to the ≈10-fold uncertainty associated the acoustics-based estimate. We thus project an 

uncertainty of about one order of magnitude for the estimate of the biomass of mesopelagic fish. 

For estimating the biomass of non-mesopelagic fish, we rely on estimates by Wilson et al., which 

does not report an uncertainty range for the biomass of non-mesopelagic fish. A later study (170), 

gave an estimate for the total biomass of fish with body weight of 1 g to 1000 kg, based on 

ecological models. Jennings et al. report a median estimate of ≈0.75 Gt C for all fish biomass, 

which includes both mesopelagic and non-mesopelagic fish biomass. Jennings et al. report a 90% 

confidence interval of 0.05-4 Gt C for the global biomass of fish. We take this range as 

representative of the uncertainty of the non-mesopelagic fish biomass estimate. Combining our 

uncertainty projections for mesopelagic fish biomass and non-mesopelagic fish biomass, we 

project an uncertainty of about 8-fold associated with the estimate of the global biomass of fish 

(link to full calculation). 

  

  

Humans and livestock 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

In order to estimate global livestock biomass, we use data on global stocks of cattle, sheep, goats, 

pigs, poultry and other livestock species from the FAOStat database (http://faostat3.fao.org/; 

domain: Production/Live animals). We multiply the total number of individuals for each species 

with mass estimates of each species from the IPCC (171). For humans, we use the UN estimate of 

the global population, and a mean mass per person of 50 kg (172). The global biomass of 

livestock turns out to be ≈0.1 Gt C (link to full calculation). Out of this global livestock biomass, 

we estimate the biomass of poultry at ≈0.005 Gt C (link to full calculation). For humans, the 

estimated global biomass is ≈0.06 Gt C (link to full calculation). 

  

Wild mammals 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Wild mammal biomass contains both land mammals and marine mammals. To estimate the 

biomass of wild land mammals, we rely on three approaches. The first is based on Smil (173). 

Smil estimates 0.004 Gt C of wild land mammals based on estimated biomass densities per biome 

taken from the History Database of the Global Environment (HYDE; 174). Our second resource 

for estimating the current biomass of wild land mammals is based on Barnosky (175), which 

reports a biomass of ≈0.008 Gt C for present day megafauna. As an alternative approach, we used 

data on the mass of individual mammals for each mammal species, the population density of each 

species, and the study area in which the population density was measured (176). This dataset 

https://paperpile.com/c/C72ZXm/5hL8
https://milo-lab.github.io/biomass_distribution/animals/chordates/fish/fish_biomass_estimate.html#Inter-method-uncertainty
https://paperpile.com/c/C72ZXm/wcnh
https://milo-lab.github.io/biomass_distribution/animals/chordates/fish/fish_biomass_estimate.html#Non-mesopelagic-fish-biomass-uncertainty
https://github.com/milo-lab/biomass_distribution/tree/master/animals/chordates/livestock
http://faostat3.fao.org/
https://paperpile.com/c/C72ZXm/2Uur
https://paperpile.com/c/C72ZXm/dZmc
https://milo-lab.github.io/biomass_distribution/animals/chordates/livestock/livestock_biomass.html
https://milo-lab.github.io/biomass_distribution/animals/chordates/livestock/poultry/poultry.html
https://milo-lab.github.io/biomass_distribution/animals/chordates/humans/humans.html
https://github.com/milo-lab/biomass_distribution/tree/master/animals/chordates/wild_mammals
https://paperpile.com/c/C72ZXm/WEZK
https://paperpile.com/c/C72ZXm/NVbw
https://paperpile.com/c/C72ZXm/fiwZ
https://paperpile.com/c/C72ZXm/7I9R


37 

included data on ≈350 mammal species. Using multiple regression, a power-law (log-log) 

functional relation was established between body mass, study area and the total number of 

individuals measured in the study area. The functional relation established is: log10(number of 

individuals) = 1.65-0.53×log10(body mass) + 0.73×log10(study area), (R2= ≈0.5). This relation was 

used to extrapolate the total number of individuals for ≈3700 mammal species for which range 

and mass data is available, by using range sizes from IUCN data 

(http://www.iucnredlist.org/technical-documents/spatial-data#mammals) as a surrogate for study 

area, and data on body mass (177; there are additional ≈1800 mammal species without mass data, 

but these usually have small body mass, small ranges and low population densities). From total 

number of individuals, the total biomass is calculated by multiplying the total number of 

individuals by the mean body mass. This approach yielded an estimate of ≈0.001 Gt C. We use 

the geometric mean of the three approaches as our final estimate for wild land mammals. The 

biomass of wild land mammals is thus estimated at ≈0.003 Gt C (link to full calculation). As our 

best projection for the uncertainty associated with our estimate of the biomass of wild land 

mammals, we calculate the 95% confidence interval around the geometric mean between our 

three estimates, which is ≈4-fold (link to full calculation). 

 

For marine mammals, we use Christensen (178), which estimate a global whale mass of ≈0.004 

Gt C (link to full calculation). This estimate by Christensen is based on using a dataset compiled 

by Kaschner et al. (179), gathered from various resources. The biomass of marine mammals is 

dominated by whales and seals. Christensen reports a 95% confidence interval of ≈1.4-fold (link 

to full calculation). As a consistency check, we compared the data for ≈30 whale species which 

are the main contributors to the global marine mammal biomass with data from the IUCN. The 

correlation between the data is high (Spearman R2=0.975), and the total biomass from both 

methods varies about ≈1.3-fold (link to full calculation). A caveat of our uncertainty analysis for 

wild marine mammals is that the estimates from the IUCN and Christensen might not be 

independent of each other. Together, we estimate the wild terrestrial and marine mammal 

biomass at 0.007 Gt C (link to full calculation). We combine our uncertainty projections for 

terrestrial and marine mammals, and thus project the uncertainty associated with our estimate of 

the total biomass of wild mammals to be ≈2-fold (link to full calculation). We note that 

interestingly, our analysis suggests that the biomass of whales is higher than the total biomass of 

all wild land mammals combined. 

  

Wild birds 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Bird biomass was calculated based on an estimate for the total number of birds in the world and 

on estimated average biomass per individual bird. The estimate of total individual birds is based 

on work by Gaston & Blackburn (180) using several methods to estimate the total number of 

birds: Gaston & Blackburn extrapolate from abundance densities for birds found in forests; 

Gaston & Blackburn extrapolate total numbers from estimates of the number of birds in Africa 

and in the Nearctic by dividing the total number by the area of the continent and applying the 

resulting density to the total land area on Earth; Gaston & Blackburn use an empirical relation 
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between area and the number of birds present in it and extrapolate it to the land area on Earth; 

Finally, Gaston & Blackburn use an allometric scaling of the density of individuals per species 

with body size. To convert the population density of individuals per species into total population 

density, Gaston & Blackburn use an estimate for the average number of species coexisting in a 

square kilometer. All these different methods yield estimates which are similar, and stand at about 

2-4×1011 individual birds.The average biomass of an individual bird was estimated based on the 

relationship between number of individuals and body size in British birds (181). By analyzing the 

data in Nee et al. (181), we calculate the average bird wet weight of British birds to be ≈80 g per 

bird. Assuming 70% water content and 50% carbon content out of the dry weight, we calculate 

≈0.004 Gt C of birds biomass globally (link to full calculation).  

 

As an alternative approach, we used data on the mass of individual birds for each bird species, the 

population density of each bird species, and the study area in which the population density was 

measured (176). This dataset included data on ≈900 bird species. Using multiple regression, a 

power-law (log-log) functional relation was established between body mass, study area and the 

total number of individuals measured in the study area. The functional relation established is: 

log10(number of individuals) = 3.26-0.3×log10(body mass) + 0.63×log10(study area), (R2 = ≈0.3). 

This relation was used to extrapolate the total number of individuals for ≈75% of the total number 

of bird species, by using breeding range sizes data (176) as a surrogate for study area, and data on 

body mass (177). From total number of individuals, the total biomass is calculated through 

multiplying the total number of individuals by the mean body mass. This approach yielded an 

estimate of ≈0.001 Gt C (link to full calculation).We take the geometric mean of the estimates 

from both approaches, ≈0.002 Gt C, to be our final estimate for the global biomass of birds. 

  

Reptiles 

Our estimate of the biomass of reptiles is based on data of mean mass of individuals for about 

99% of reptile species. Data on the mean (or minimum) population density for ≈500 species of 

reptiles was used to generated a power-law (log-log) regression between mean mass of an 

individual reptile for each reptile species and mean (or minimum) population density for the same 

reptile species. The relation established based on mean population densities was log10(population 

density) = 4.4-0.5×log10(body mass), (R2=0.13). The relation established based on minimum 

population densities was log10(population density) = 2-0.6×log10(body mass), (R2=0.18). These 

relations were used to estimate the population density of the missing ≈9500 species of reptiles 

without population density estimates. From the extrapolated population densities, estimates of the 

global biomass of reptiles were calculated through multiplying the population densities by the 

range of each species (182), and its mean mass per individual (183). The estimates using mean or 

minimum population densities are ≈0.5 Gt C and ≈0.001 Gt C, respectively.  

There is a pronounced effect of the size of the area in which the densities were sampled on the 

density of individuals (176). Therefore, an alternative approach was used. In this approach, we 

used data on the mass of individual birds, their population density, and the study area in which 

the population density was measured (176). This dataset included data on ≈192 reptile species. 

Using multiple regression, a power-law (log-log) functional relation was established between 

body mass, study area and the total number of individuals measured in the study area. The 

functional relation established is: log10(number of individuals) = 1.3-0.13×log10(body mass) + 
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0.5×log10(study area), (R2≈0.17). This relation was used to extrapolate the total number of 

individuals for all reptile species, by using range sizes data (182) as a surrogate for study area, 

and data on body mass (183). From total number of individuals the total biomass is calculated by 

multiplying the total number of individual by the mean body mass. This approach yielded an 

estimate of 0.00005 Gt C. We use the geometric mean of these three estimates, 0.003 Gt C, as our 

best estimate for the biomass of reptiles. This type of analysis has many caveats associated with 

it, and a very high uncertainty (≈2 orders of magnitude). Because of such high uncertainty and 

because of the fact that the biomass reported here for reptiles is very small, we chose not to report 

it in the main text. Nevertheless, this is a first attempt at estimating the global biomass of reptiles, 

and he hope it will motivate further research that will improve upon our work. 

 

Amphibians 

After searching the literature for estimates of the global biomass of amphibians, or data that could 

be used to produce a reliable estimate, we could not find sufficient data to establish a robust 

estimate. The studies we did encounter (184–192) provide estimates of biomass densities for only 

a few species in a specific location. We could not determine the fraction of the population of 

amphibians the measured species represent, as well as the range each species has. This makes it 

hard to establish a reliable estimate for the total biomass of amphibians. We argue that the 

contribution from amphibian biomass will likely not change significantly our estimate of the total 

biomass of animals. To support this argument, we very crude estimate the total biomass of 

amphibians. We take data on the distribution of body weight in amphibians from a recent study 

(193), and calculate a characteristic biomass based on the geometric mean to give ≈1 g C per 

individual amphibian. We naively assume a density of ≈1 amphibian per m2 over the entire 

terrestrial surface area, which is likely to be an overestimate of the density of amphibians. 

Multiplying the characteristic biomass of a single amphibian by the density of ≈1 m2, we get a 

biomass density of ≈1 g C m-2. Applying this density over the entire ice-free terrestrial surface 

area, which is ≈1014 m2, we estimate a total biomass of ≈0.1 Gt C. This estimate is likely an 

overestimate of amphibian biomass, but is still negligible relative to the total biomass of animals, 

which we estimate at ≈2 Gt C. Because this estimate is very crude and has many caveats 

associated with it, comparison of amphibian biomass relative to contributions from other 

vertebrates is not possible. We hope future work will result in a more robust estimate. 

Arthropods 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

In estimating the global mass of arthropods, we divide our analysis by environment. We give an 

estimate for the biomass of terrestrial arthropods, and a second estimate for the biomass of marine 

arthropods. As we show below, combining both terrestrial and marine arthropod biomasses, we 

get a total value of ≈1 Gt C. 
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Previous estimates 

After surveying the literature for an estimate on the global biomass of arthropods, we could not 

find a reliable source based on sampling of arthropod biomass across biomes. We first give a 

rough survey of global estimates from the literature. The global number of insects, which are a 

part of the arthropod phylum, was estimated by Hölldobler & Wilson (194) at ≈1018 individuals 

based on an earlier estimate by Williams (195) put the total number of insects between 1017-1019 

based on the density of insects in the soil of southeast England and extrapolated this density to the 

global terrestrial area of the world. As a result of the International Biological Program, a global 

analysis of soil fauna, including soil arthropods, was conducted (146). Building on these data, a 

more recent study (144) added data on several groups of soil arthropods. These two studies, 

however, do not include all groups of soil arthropods, and not all habitats. In a recent paper 

estimating the global amount of DNA in the biosphere (196), the authors used a number of 

9×1018, presumably based on Williams (195), alongside an estimate they give for the average 

mass of 10-5 kg per organism, to arrive at a global wet biomass of 90 Gt. This is equivalent to ≈13 

Gt C when recast as carbon biomass (assuming 30% dry weight and 50% carbon of the dry 

weight). 

  

Terrestrial arthropods 

We took two different approaches to estimate the total biomass of arthropods. The first approach 

relies on measured biomass densities from the literature which we extrapolate to the global 

terrestrial ice-free land surface to yield a global biomass estimate. Most measurements of the 

biomass densities of arthropods we could find in the literature were measured in forests and 

savannas. Most studies either measure soil arthropod biomass or canopy arthropod biomass. Stork 

(197) measured the relative contribution of different habitats to the total biomass of arthropods 

and found litter, soil and canopy arthropods to be the main contributors to the arthropod biomass. 

Therefore, we combine the estimates for litter (198, 199), canopy (200–202)and soil arthropods 

(202, 203), each around ≈1 g C m-2 and estimate the total biomass density of arthropods at ≈3 g C 

m-2 (link to full calculation). We apply these average biomass densities uniformly across the ice-

free terrestrial surface area of ≈1.3×1014 m2 and thus get an estimate of ≈0.4 Gt C (link to full 

calculation). 

 

The second approach uses estimates for the average weight of an individual arthropod and 

estimates for the total number of arthropods in the world to calculate the global biomass of 

arthropods. Some of the studies which measured the biomass density of arthropods also reported 

the total individual densities in the same sites (200–202). Dividing the biomass densities by the 

mass densities gives an estimate of ≈0.1 mg C for the average biomass per individual arthropod 

(link to full calculation). To get an estimate of the global biomass of arthropods from the average 

biomass of an individual arthropod, we need information on the total number of arthropods 

globally. One crude estimate that has been mentioned repeatedly in the literature is that of 

Williams (195), who estimated 1018 insects in the world. Multiplying the average biomass of an 

individual arthropod with this estimates for the total number of arthropods gives an estimate of 

0.1 Gt C (link to full calculation). Our final best estimate for the total arthropod biomass is the 

geometric mean of biomass estimates we got from the two approaches, which is ≈0.2 Gt C. 
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The estimates we get from the two approaches are reassuringly similar. It is possible that the 

estimates of terrestrial arthropod biomass we provide here are an overestimate of the actual 

biomass, as our biomass densities are taken mainly from forests, which contain high productivity 

(and thus also arthropod densities) relative to other biomes. When applying the biomass densities 

of forests to the entire terrestrial ecosystem, we are likely to overestimate the global biomass of 

arthropods. 

 

It is noteworthy that for a subset of the groups of terrestrial arthropods, such as termites, a more 

detailed estimate of biomass exists (204). Using the characteristic biomass densities for this group 

in each biome as reported in Sanderson (204), and multiplying these densities by the area of each 

biome (link to full calculation), we get a total of ≈0.07 Gt C, which is in line with the above 

values by being lower but not a negligible fraction of the 0.25-0.5 Gt C values. 

We now analyze the associated uncertainty of the estimate for the total biomass of terrestrial 

arthropods, which we report as a fold change factor from the mean, representing a range akin to a 

95% confidence interval of the estimate. In order to quantify the associated uncertainty, we 

estimate the biomass of terrestrial arthropods using two independent methods. The first method 

uses estimates of soil and canopy biomass densities of arthropods mainly in forests and savannas. 

The uncertainty in those estimates is about ≈2-fold, with a similar within-study uncertainty (link 

to full calculation). The second method uses an estimate for the average mass of a single 

arthropod, along with an estimate for the total number of insects. The uncertainty in the average 

mass of a single arthropod is around 4-fold, while the uncertainty in the estimate of the total 

amount of arthropods is about an order of magnitude. Combining these two uncertainties 

together, the uncertainty associated with the second method is ≈15-fold (link to full calculation). 

As our best projection for the uncertainty associated with the estimate of the biomass to terrestrial 

arthropods, we take the highest uncertainty of the different uncertainties discussed above. We 

thus project an uncertainty of ≈15-fold associated with the estimate of the biomass of terrestrial 

arthropods (link to full calculation). As we stated above, however, our estimate is more likely to 

be an overestimate than an underestimate. 

  

Marine arthropods 

For estimating the total abundance of marine arthropods, we based our estimates on data from the 

marine ecosystem biomass data (MAREDAT) initiative. This initiative, which quantified global 

biomass of different plankton groups, is part of the Marine Ecosystem Model Intercomparison 

Project. The Marine Ecosystem Model Intercomparison Project was initiated in 2007 to facilitate 

development of dynamic ocean models which include biological information. In the context of 

this project, it was decided to collect and organize existing biomass concentration measurements 

for the previously defined “key plankton functional types that need to be simulated explicitly to 

capture important biogeochemical processes in the ocean” (205). The MAREDAT database 

contains measurements of the biomass concentration for each plankton group. From this database 

Buitenhuis et al. (206) make estimates for the global biomass of each plankton group by using a 

characteristic biomass concentration for each depth (either a median or average of the values in 

the database) and applying it across the entire volume of ocean at that depth. This approach 

results in two types of estimates for the global biomass of each plankton group: a so called 

“minimum” estimate which uses the median concentration of biomass from the database, and a so 

https://paperpile.com/c/C72ZXm/lxWx
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https://milo-lab.github.io/biomass_distribution/animals/arthropods/terrestrial_arthropods/terrestrial_arthropods.html#The-biomass-of-termites
https://milo-lab.github.io/biomass_distribution/animals/arthropods/terrestrial_arthropods/terrestrial_arthropods.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/animals/arthropods/terrestrial_arthropods/terrestrial_arthropods.html#Uncertainty-analysis
https://milo-lab.github.io/biomass_distribution/animals/arthropods/terrestrial_arthropods/terrestrial_arthropods.html#Uncertainty-analysis
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called “maximum” estimate which uses the average biomass concentration. Because the 

distributions of values in the database are usually highly skewed by asymmetrically high values, 

the median and mean are loosely associated by the MAREDAT authors with a minimum and 

maximum estimate. The estimate based on the average value is more susceptible to biases in 

oversampling singular locations such as blooms of plankton species, or of coastal areas in which 

biomass concentrations are especially high, which might lead to an overestimate. On the other 

hand, the estimate based on the median biomass concentration might underestimate global 

biomass as it will reduce the effect of biologically relevant high biomass concentrations. 

Therefore, here and in all estimates based on MAREDAT data, we take the geometric mean of the 

“minimum” and “maximum” estimates (actually median and mean values of the distribution) as 

our best estimate, which will increase our robustness to the effects discussed above. We do not 

consider the range of the “minimum” and “maximum” estimates as the uncertainty of our 

estimates, as there are many more sources of uncertainty. We discuss in detail the uncertainties of 

the estimates based on the MAREDAT database in a dedicated section. The data in the 

MAREDAT database is divided into plankton size classes: microzooplankton (zooplankton 

between 5 and 200 µm in diameter), mesozooplankton (zooplankton between 200 and 2000 µm in 

diameter) and macrozooplankton (zooplankton between 2 and 10 mm). We are interested in the 

biomass of arthropods in each class. For microzooplankton, we assume the biomass fraction of 

arthropods is negligible, as the definition of microzooplankton in the MAREDAT dataset 

excluded copepods, moving copepod biomass to the mesozooplankton category (207). For 

mesozooplankton, we assume that biomass is dominated by crustaceans such as copepods. We 

base this assumption on a recent global 18S ribosomal DNA sequencing effort that was part of the 

Tara Oceans campaign (130). First, figure W3 in the companion website of de Vargas et al. (130) 

shows a good correlation between rDNA copy numbers and biomass of the organism, and gives 

evidence for the claim that one can reconstruct the relative biomass contribution of several 

different taxa based on their rDNA read abundance. We use this correlation in conjunction with 

figure W10 of the companion website of de Vargas et al. (130), which presents the abundance 

distribution of reads of mesozooplankton between different taxa. From this figure, it is evident 

that the abundance of mesozooplankton is mostly composed of copepods and protists from the 

group Rhizaria. Yet Rhizaria are probably not a major fraction of the mesozooplankton in the 

MAREDAT database as a recent study (208) has indicated that although Rhizaria are a major 

fraction of mesozooplankton, they are usually under sampled because many of them are delicate 

and are severely damaged by plankton nets or fixatives used in surveys such as the ones used to 

build the MAREDAT. Because Rhizaria are usually under sampled in conventional sampling 

techniques, we assume the samples on which the biomass of mesozooplankton estimate is based, 

have a small fraction of Rhizaria, and thus are largely dominated by copepods. We therefore use 

the biomass estimate for mesozooplankton from Buitenhuis et al. (206) which is the basis of the 

MAREDAT value as an estimate of the copepod biomass. Buitenhuis et al. (206) estimated the 

biomass of mesozooplankton at around ≈0.4 Gt C (link to full calculation). Data on 

mesozooplankton biomass in the study was integrated down to a depth of 500 meters. The data 

reported was standardized to a mesh size of 333 µm, but smaller mesh sizes of 200 µm, which is 

the lower range of the size fraction of mesozooplankton, will increase the total biomass by ≈1.5-

fold (209; link to full calculation). We correct for this effect and thus we use ≈0.6 Gt C as the 

https://paperpile.com/c/C72ZXm/qLsf
https://paperpile.com/c/C72ZXm/3uvj
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global estimate of copepod biomass, assuming that contributions from lower depths will not 

change the estimate dramatically. 

Some arthropods are also included in the macrozooplankton size category (zooplankton between 

2 and 10 mm) with species such as Antarctic krill, which Atkinson et al. (210) estimated to be 

around ≈0.06 Gt C. The “minimum” and “maximum” estimates of the total biomass of 

macrozooplankton are 0.2 Gt C and 1.5 Gt C, respectively (206). We use the geometric mean of 

those estimates ≈0.5 Gt C (link to full calculation). Macrozooplankton contains organisms from 

many phyla such as arthropods, cnidarians, chordates, annelids, molluscs, ctenophores and 

representatives from Chaetognatha (a phylum of pelagic worms). As described in the section on 

cnidarians and molluscs, there are databases dedicated specifically to gelatinous plankton (which 

includes cnidaria, chordata and ctenophora) and to pteropods. The estimate of the combined 

biomass of pteropods and gelatinous plankton is around ≈0.2 Gt C, which leaves ≈0.3 Gt C of 

macrozooplankton for the other phyla. Analysis of the data from the MAREDAT database reveals 

that macrozooplankton biomass is dominated by arthropod biomass. We thus estimate that most 

of the remaining ≈0.4 Gt C of macrozooplankton is arthropod biomass (link to full calculation).  

We thus arrive at an estimate of total marine arthropod biomass to ≈1 Gt C integrating over all 

relevant size ranges. 

In deriving the uncertainty, we note that the estimate of the biomass of marine arthropods is 

largely based on data present in the MAREDAT database. Some of the sources of uncertainty 

include possible sampling biases, lack of sampling in many parts of the ocean and uncertainties 

regarding conversion relations between numbers of individuals to biomass. Due to the presence of 

many uncertainty sources, most of which are hard to quantify, we took a different approach for 

projecting the uncertainty of the estimates based on data from the MAREDAT initiative. We 

further describe our approach in a dedicated section below. 

Cnidarians 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

The phylum cnidaria contains both corals and jellyfish. Taken together, these two groups 

contribute about ≈0.1 Gt C to the total biomass.  

To estimate jellyfish biomass, we use a recent paper by Lucas et al. (211), which has integrated a 

database using over 90,000 quantitative abundance data for gelatinous zooplankton, together with 

biometric equations for the conversion of abundance data into carbon biomass. From this data, 

Lucas et al. calculated a geometric mean of biomass per unit volume and applied it uniformly 

across the total volume of the upper 200 m of the ocean, which yields an estimate of 0.04 Gt C of 

gelatinous zooplankton biomass. Of the 38.3 Mt C, 92% are contributed by cnidarians, making 

their biomass around 0.04 Gt C (link to full calculation). It is important to note that this estimate 

takes into account only the top 200 m of the water column, and data regarding deeper oceanic 

zones in scarce. In addition, this estimate takes into account only the pelagic medusa phase of the 

jellyfish lifecycle, and doesn’t include the polyp phase, which is benthic.  

 

https://paperpile.com/c/C72ZXm/fFTu
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Coral biomass was not estimated by Lucas et al. (211) as corals are benthic, and thus we use other 

approaches to estimate their biomass. We estimate the total biomass of corals in coral reefs by 

first calculating the total surface area of coral tissue globally, and then convert this value to 

biomass by the carbon mass density of coral tissue per unit surface area. We estimate the total 

surface area of corals worldwide using two approaches. The first approach estimates the total 

surface area of corals using the total area of coral reefs (≈0.25×1012 m2; 212). We estimate that 

20% of the reef area is covered by corals (we use ≈20% coverage, a similar value to that of the 

Great Barrier Reef; 213). This gives us the projected area of corals. Corals have a complex 3D 

structure that increases their surface area. To take this effect into account, we use a recent study 

that estimated the ratio between coral tissue surface area and projected area at ≈5 (214). This 

gives a global coral surface area of ≈2.4×1011 m2 (link to full calculation). To convert the total 

surface area to biomass, we use estimates for the tissue biomass per unit surface area of corals of 

≈400 g C m-2 (215). This yields a total of ≈0.1 Gt C (link to full calculation). The second 

approach uses an estimate of the global calcification rate in coral reefs of ≈0.75 Gt CaCO3 yr-1 

(216). We divide this rate by the surface area specific calcification rate of corals (≈104 g CaCO3 

m-2 yr-1; 217, 218). This yields a total coral surface area of ≈6×1010 m2 (link to full calculation). 

We multiply the total surface area by the tissue biomass per surface area (≈400 g C m-2; 215) to 

get ≈0.03 Gt C (link to full calculation). Our final estimate is the geometric mean of both 

approaches, which is ≈0.05 Gt C (link to full calculation). An important caveat of this analysis is 

that it doesn’t include contribution of corals outside coral reefs, like those located in seamounts. 

Nevertheless, we account for this biomass of corals which are out of formal coral reefs when 

calculating the total benthic biomass. 

Molluscs 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Molluscs are a large phylum of marine invertebrates, and contains several classes, such as 

gastropods (snails, slugs, and pelagic sea hares and sea butterflies), cephalopods (squids and 

octopuses) and bivalves (clams, oysters etc.). Out of all the different species, only gastropods are 

both marine and terrestrial, and mostly gastropods and cephalopods are pelagic.  

As part of the marine ecosystems biomass data initiative, quantifying the global biomass of 

different plankton groups, Buitenhuis et al. (206) constructed a database containing samples of 

biomass of pteropods, which are a group of pelagic gastropods including sea butterflies and sea 

angels. From this database Buitenhuis et al. (206) generated estimates for the global biomass of 

pteropods by using a characteristic biomass concentration for each depth (either a median or 

average of the values in the database) and applying across the entire volume of ocean at that 

depth. The estimates based on median and average biomass concentrations at each depth are 

0.026 Gt C and 0.67 Gt C, respectively (206). We use the geometric mean of the two estimates to 

arrive at ≈0.15 Gt C (link to full calculation). The data contains measurements down to 2000 m 

depth, and thus doesn’t include the entire depth range of the ocean. Nevertheless, the depth 

profiles of the data show that abundance drops with depth so that biomass of lower layers is 

smaller than surface water biomass. Our best estimate of cephalopod biomass is ≈0.05 Gt C, 
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based on Rodhouse & Nigmatullin (219). We thus took a value of 0.2 Gt C as the estimate of the 

global biomass of molluscs under the assumption that the biomass contribution of other types of 

molluscs such as benthic molluscs or terrestrial gastropods is minor compared to the contribution 

of pteropods. 

Protists 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Protists are a broad and highly diverse group of eukaryotes, present in the marine, terrestrial and 

deep subsurface environments.  

  

Marine protists 

The estimate of marine protists is based on the MAREDAT initiative, where we included 

estimates of all plankton groups that are dominated by protists. The main groups with a 

significant biomass contribution were picoeukaryotes (206, 220), microzooplankton (206; defined 

not to include copepod biomass), diatoms (221), and Phaeocystis (206). The MAREDAT 

database contains measurements of the biomass concentration for each of plankton groups above. 

Members of the MAREDAT initiative used this database to estimate the global biomass of each 

plankton group by using a characteristic biomass concentration for each depth (either a median or 

average of the values in the database) and applying across the entire volume of ocean at that 

depth. Two types of estimates are supplied for the global biomass of each plankton group: a 

“minimum” estimate which uses the median concentration of biomass from the database, and a 

“maximum” estimate which uses the average biomass concentration. Because the distributions of 

values in the database are usually highly skewed by asymmetrically high values the median and 

mean are loosely associated by the authors of the MAREDAT study with a minimum and 

maximum estimate. The estimate based on the average value is more susceptible to biases in 

oversampling singular locations such as blooms of plankton species, or of coastal areas in which 

biomass concentrations are especially high, which might lead to an overestimate. On the other 

hand, the estimate based on the median biomass concentration might underestimate global 

biomass as it will reduce the effect of biologically relevant high biomass concentrations. 

Therefore, here and in all estimates based on MAREDAT data, we take the geometric mean of the 

“minimum” and “maximum” estimates (actually median and mean values of the distribution) as 

our best estimate, which will increase our robustness to the effects discussed above. We do not 

consider the range of the “minimum” and “maximum” estimates as the uncertainty of our 

estimates, as there are many more sources of uncertainty. We discuss in detail the uncertainties of 

the estimates based on the MAREDAT database in a dedicated section. 

 

For picoeukaryotes, Buitenhuis et al. (206, 220) estimates that they represent ≈60% (49-69%) of 

the global biomass of picophytoplankton. Estimates for the global picophytoplankton biomass 

(206, 220) converge at ≈0.4 Gt C which translates to ≈0.2 Gt C of picoeukaryotes (link to full 

calculation). Picoeukaryotes contain both protists and plant species (like chlorophytes). It seems 

that, from the available literature, the biomass distribution between them is not strongly favored 
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towards one class (222), we thus chose to estimate the protist fraction at ≈0.1 Gt C (link to full 

calculation). 

 

Protists in the picoplankton to nanoplankton size range (0.8-5 µm in diameter) include not only 

autotrophic, but also heterotrophic organisms. As we could not find a reliable resource for 

estimating the biomass of heterotrophic pico-nanoplankton we use a recent global 18S ribosomal 

DNA sequencing effort that was part of the Tara Oceans campaign (130). Based on this study, it 

appears that in the locations sampled the biomass of heterotrophic protists in this size range is 

about twice that of autotrophic protists, so we estimate a biomass of ≈0.3 Gt C of heterotrophic 

pico-nanoplankton protists. Relying on 18S sequence abundance as a proxy for biomass is not a 

well-established practice, and has various biases, but for lack of any other alternative we could 

find to perform the estimate, we chose to use it. Yet, we note that this plays a minor role in our 

analysis that in any case will not affect any of the major conclusions of our study. 

 

For microzooplankton, estimates in Buitenhuis et al. (206) are of ≈0.6 Gt C (link to full 

calculation). For diatoms, Leblanc et al. (221) estimates a global biomass of ≈0.3 Gt C (link to 

full calculation). For Phaeocystis, the estimate in Buitenhuis et al. (206) is ≈0.3 Gt C, but the data 

has been noted to lack coverage and to have a bias to coastal environments (link to full 

calculation). As stated in Buitenhuis et al. (206), the data from the MAREDAT initiative doesn’t 

contain the biomass of nanophytoplankton (phytoplankton between 2 and 20 µm) and autotrophic 

dinoflagellates. Nevertheless, this omission might be compensated by overestimation of 

Phaeocystis biomass because of sampling bias, so overall the sum of all the different 

phytoplankton fits well with total chlorophyll measurements from the WOA 2005. This is why 

we chose to take the total value of 1.5 Gt C as the sum of protist biomass from the MAREDAT 

initiative. 

 

For phytoplankton, biomass and number of observations drop rapidly below 200 meters, and a 

recent paper (223) estimated that the integrated cell abundance in the deep ocean (2000-4000 m) 

is more than an order of magnitude smaller than for the top 200 meters. Therefore, our estimates 

probably will not be affected significantly by omission of deep sea plankton biomass. Also for 

heterotrophic protists, cell abundance in the deep ocean is much lower, with estimates for their 

total biomass of ≈0.1 Gt C (132). Other groups of protists, such as coccolithophores and 

foraminifera, for which data exist in the MAREDAT initiative datasets, were not included 

because their relative biomass contribution is an order of magnitude smaller. 

 

In addition, a recent paper by Biard et al. (208) measured the contribution of protists from the 

Rhizaria super-group. As stated in the marine arthropod section, the biomass of this group of 

protists is underrepresented in conventional plankton estimates, such as that of the MAREDAT 

initiative because of the delicate nature of the organisms in the group. Biard et al. use in-situ 

imaging to estimate the biomass concentration of Rhizaria. Biard et al. divided the data into three 

depth layers (0-100 m, 100-200 m, and 200-500 m), and multiplied median biomass 

concentrations at each depth layer across the entire volume of water at that layer to generate a 

global estimate. The resulting estimate for the biomass of Rhizaria in the top 500 meters of the 
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ocean is ≈0.2 Gt C (link to full calculation). As with other estimates, because of lack of sampling 

below 500 this might be an underestimate of actual Rhizaria biomass. 

 

An additional location in which protists reside is attached to particulate organic matter. To 

estimate the biomass of particle-attached protists in the marine environment, we rely on a several 

studies that have measured the relative number of particle-attached protists and prokaryotes at the 

epipelagic (41, 224), mesopelagic (41) and bathypelagic (50) layers. For each study, we calculate 

the characteristic ratio between the number of protist and prokaryote cells. To estimate the 

biomass of particle-attached protists relative to prokaryotes, we use estimates on the carbon 

content of protists in the epipelagic, mesopelagic and bathypelagic layers (132, 224). We compare 

this carbon content to our best estimate of the carbon content of particle-attached prokaryotes (see 

marine bacteria and archaea section). We generate estimates for the biomass of particle-attached 

protists relative to particle-attached prokaryotes in the epipelagic, mesopelagic and bathypelagic 

layers. Overall, we estimate particle-attached protists have about the same biomass as particle-

attached prokaryotes (link to full calculation). We estimate ≈0.3 Gt C of particle-attached 

prokaryotes in marine snow, thus leading to an estimate of ≈0.3 Gt C of particle-attached protists. 

Estimates of photosynthetic benthic protists, the kelps growing on rocky substrates put their the 

global standing crop of 0.02 Gt C (225). A similar value can be calculated from annual 

productivity given by De vooys (16) assuming one turnover of the standing crop each year (18).  

 

The estimate of the biomass of marine protists is largely based on data present in the MAREDAT 

database. There are many sources of uncertainty associated with the data collected in the 

database, which include possible sampling biases, lack of sampling in certain parts of the ocean 

and uncertainties regarding conversion relations between numbers of individuals to biomass. Due 

to the presence of many uncertainty sources, some of which are hard to estimate, we took a 

different approach for projecting the uncertainty of the estimates based on data from the 

MAREDAT initiative. For a detailed characterization on the uncertainty of the data in the 

database, see the relevant section below. Overall, bringing together estimates from both the 

MAREDAT initiative data and biomass estimates of Rhizaria and particle-attached protists, we 

get a total of ≈2 Gt C for marine protists. 

  

Terrestrial protists 

After searching the literature, we could not find a comprehensive account of the biomass of 

protists in soils. We thus generated a crude estimate of the total biomass of protists in soil based 

on estimating the total number of individual protists and the characteristic carbon content of 

individual protists. Generally, protists are divided into four morphological groups, i.e. flagellates, 

ciliates, naked amoebae and testate amoebae (226). The relative proportions of these morphotypes 

vary greatly between studies. Not all studies report values for each of the groups. To estimate the 

total number of soil protists, we collected data from 42 independent studies which measured the 

biomass density of protists per gram dry weight of soil (227–248). We specifically avoided using 

studies which rely on culturing of soil samples and the most probable number method, as these 

methods are not reliable (248). 
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To go from the measurements reported in these studies to an estimate of the total number of soil 

protists, we bin the measurements based on the habitat in which they were measured. For studies 

which reported more than one value in a specific habitat, we first calculate the mean of these 

values. We then calculate the mean value from the different values reported in different studies 

within the same habitat. We thus generate characteristic values for the number of individual 

protists per gram soil in each habitat and for each group of protists. Missing values in specific 

habitats were filled based on similar habitats (e.g. for boreal forests we use values from temperate 

forests) or based on general values from expert assessments of the characteristic values for each 

group of protists (243). We used two approaches to calculate the mean values for measurements 

within the same study and between studies. We either used the arithmetic mean or the geometric 

mean of values as explained below. The estimate based on the arithmetic mean is more 

susceptible to sampling bias, as even a single measurement which is not characteristic of the 

global population (such as samples which are contaminated with organic carbon sources, or 

samples which have some technical biases associated with them) might shift the average number 

of individuals significantly. On the other hand, the estimate based on the geometric mean might 

underestimate global biomass as it will reduce the effect of biologically relevant high biomass 

concentrations. As a compromise between these two caveats, we chose to use as our best estimate 

the geometric mean of the estimates using the two methodologies.  

 

To convert measurements of the total number of protists per gram soil to units of number of 

individuals per m2, we need two parameters - the bulk density of soil, and the depth at which the 

measurements were conducted. For the bulk density of soil, we use a global mean of ≈1.2 g cm3 

(249). The mean depth in which samples were collected (across studies) is ≈8 cm. We use this 

value as the characteristic value for the depth at which the measurements were conducted (link to 

full calculation). By multiplying the total number of individual protists per gram of soil by the 

bulk density of soil and the depth of sampling, we get an estimate of the total number of protists 

of each morphological group in each habitat in the top 8 cm of soil. These estimates do not take 

into account biomass contributions from soil layers below 8 cm. To account for these additional 

contributions, we estimate the fraction of the total biomass of soil protists found in the top 8 cm 

of the soil profile out of the full depth of soil. To estimates the fraction of the total biomass of soil 

protists found in the top 8 cm of soil profile, we rely on two studies (110, 144) which provide 

estimates for the distribution of microbial biomass along the soil profile. We use the geometric 

mean of those two studies, and estimate that ≈50% of the total biomass of soil protists is found in 

the top 8 cm of the soil profile (link to full calculation). Multiplying our estimates for the total 

number of soil protists by a factor of two gives us an estimate for the total number of soil protists 

from each morphological type per m2 in each habitat. To calculate the global number of protists 

from each morphological type, we multiply the estimates for the total number of individuals per 

m2 in each habitat by the total area of each habitat (23). We arrive at an estimate of ≈1.5×1022 

ciliates, ≈3×1025 flagellates, ≈1.5×1024 naked amoebae and ≈4×1023 testate amoebae globally 

(link to full calculation). 

 

In addition to estimating the total number of each morphological type of soil protist, we also 

estimate the characteristic carbon content of each morphological type. We collected data from 11 

studies which measured the carbon content of the different morphological types (238, 239, 246, 

https://paperpile.com/c/C72ZXm/69ca
https://paperpile.com/c/C72ZXm/Y357
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-protists
https://paperpile.com/c/C72ZXm/lyo2+kDsi
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-protists
https://paperpile.com/c/C72ZXm/hzFN
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-protists
https://paperpile.com/c/C72ZXm/A94G+NKIN+d2Ap+yXxH+7zrI+k6v0+AEqH+K6Y8+fxyA+JonX+8rQo
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250–257). For studies which report more than one measurement, we first calculate the geometric 

mean of values within the study. We then calculate the geometric mean of values from different 

studies for each morphological type. We arrive at an estimate of ≈900 pg C for a ciliate cell, ≈20 

pg C for a flagellate cell, ≈200 pg C for a naked amoebae cell, and ≈1500 pg C for testate 

amoebae (link to full calculation). We multiply the total number of cells of each morphological 

type by the characteristic carbon content of each morphological type, and sum over all 

morphological types to arrive at an estimate of the total biomass of soil protists, which amounts to 

≈1.5 Gt C (link to full calculation). 

 

We now analyze the associated uncertainty of the estimate for the total biomass of terrestrial 

protists, which we report as a fold change factor from the mean, representing a range akin to a 

95% confidence interval of the estimate. We first assess the uncertainty associated with the 

estimate of the total number of individual protists. We derive the intra-study uncertainty for the 

values reported in studies which reported more than one measurement (link to full calculation). 

We also calculate the inter-study uncertainty for different studies within the same habitat. We use 

the maximum of the intra-study and inter-study uncertainty as our projection of the uncertainty 

associated with the estimate of the total number of protists in each habitat (link to full 

calculation). We integrate the uncertainties associated with our estimates of the bulk soil density 

and the fraction of the total biomass of soil protists found in the top 8 cm of the soil profile. We 

could not find an estimate for the uncertainty around the global average of the the bulk soil 

density, so we crudely use ≈2-fold as our best projection. We use the 95% confidence interval 

around our mean fraction of the total biomass of soil protists found in the top 8 cm as our 

projection for the uncertainty associated with this parameter, which is ≈3-fold (link to full 

calculation). We propagate the uncertainties for the total number of protists in each biome to the 

estimate of the total number of protists for each protists group. This yields a projection of ≈6-fold 

uncertainty for the total number of ciliates, ≈5-fold uncertainty for the total number of flagellates 

and testate amoebae, and ≈4-fold for the total number of naked amoebae (link to full calculation). 

For the carbon content of each morphological type, we assess the intra-study uncertainty and 

interstudy uncertainty, and use the maximum of both as our projection of the uncertainty 

associated with the characteristic carbon content of each morphological type. We project an 

uncertainty of ≈3-fold for the characteristic carbon content of ciliates and flagellates, ≈8-fold 

uncertainty associated with the estimate of the carbon content of naked amoebae and ≈2-fold 

uncertainty associated with the estimate of the carbon content of testate amoebae (link to full 

calculation). Finally, we combine the uncertainties for the total number of cells and the 

characteristic carbon content of each morphological type and propagate the uncertainty to the 

total estimate of the biomass of soil protists. We thus arrive at a projection of ≈4-fold uncertainty 

associated with our estimate of the total biomass of soil protists (link to full calculation).  

  

Deep subsurface  

Another potential contribution to the global biomass of protists comes from terrestrial and marine 

deep subsurface environments. The biomass of protists in both environments has not been 

extensively studied. For marine deep subsurface, eukaryotes are probably dominated by fungi 

(258). As we estimate the biomass of fungi to be very small in those environments (see fungi 

section), we estimate that the biomass of other eukaryotic microbes such as protists will also be 

https://paperpile.com/c/C72ZXm/A94G+NKIN+d2Ap+yXxH+7zrI+k6v0+AEqH+K6Y8+fxyA+JonX+8rQo
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Carbon-content-of-protists
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Intra-study-uncertainty
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-individuals
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Fraction-of-biomass-of-protists-in-top-8-cm
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-individuals
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Carbon-content
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/03Nm
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low. For the terrestrial deep subsurface, most early estimates of the abundance of protists in 

aquifers were based on cultivation-based methods, which are likely not to accurately represent the 

distribution of protists (136, 259). Based on these measurements, researchers have claimed the 

distribution of protists is limited to shallow aquifers (260), with the abundance of protists in 

deeper aquifers being orders of magnitude lower than that of prokaryotes (136). Nevertheless, 

more recent findings have identified the presence of protists in deep terrestrial subsurface (261). 

Borgonie et al. have claimed the abundance of protists in their samples is low but provided no 

quantitative account of the abundance of protists which allows estimation of their global 

abundance. Measurement of the abundance of protists in uncontaminated aquifers using direct 

microscopic counts are very scarce and are focused on shallow aquifers (262, 263), which do not 

reflect the abundance of deep subsurface aquifers. Protists might also be present in the oceanic 

crust, but at present we could not find reliable sampling of their abundance in this environment. 

Due to the lack of data on the abundance of protists in the terrestrial deep subsurface and oceanic 

crust, we do not include them in the current analysis. We highlight this knowledge gap in the 

discussion section of the paper main text. 

Sanity checks on the MAREDAT dataset 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

A major source of information regarding the global biomasses of marine taxa is the MAREDAT 

database. As stated in the specific sections relying on data from the database, there are many 

sources of uncertainty associated with the estimates stemming from the MAREDAT data. As 

some of these uncertainties are hard to quantify accurately, we chose a different route to 

projecting the total uncertainty of the estimates in the MAREDAT database. We compare the 

estimates generated based on the MAREDAT database with estimates based on independent 

sources as a consistency check for the robustness of the biomass estimates we use in this study, 

and to quantify the uncertainty of our estimate. 

 
Comparison of MAREDAT and the Tara oceans dataset 

The Tara Oceans expedition is a campaign set out by the multinational Tara Oceans consortium, 

which sampled microscopic plankton at 210 sites and at depths up to 2000 m in all the major 

oceanic regions during expeditions from 2009 through 2013 (264). One of the products of this 

expedition was a study which described the diversity of eukaryotic plankton across the global 

oceans (130). The dataset this study generated divides the plankton community based on size 

ranges (pico-nano-, nano-, micro- and meso-plankton). The data in the Tara Oceans provides only 

number of reads for each taxon. The fraction of reads that a taxon has out of the total number of 

reads can be used as a proxy for the biomass fraction of the taxon, but not as a proxy of its 

absolute biomass. Relying on 18S sequence abundance as a proxy for biomass is not a well-

established practice, and has its own biases, but we chose to use it for the sake of comparing it to 

independent approaches such as the MAREDAT database. Each plankton size fraction sampled in 

the study was sequenced to approximately the same sequencing depth (≈120 million reads). This 

means that the 18S read data can provide a possible proxy for the biomass fraction of a certain 

https://paperpile.com/c/C72ZXm/vzb7+uEBS
https://paperpile.com/c/C72ZXm/pFu7
https://paperpile.com/c/C72ZXm/uEBS
https://paperpile.com/c/C72ZXm/EwNO
https://paperpile.com/c/C72ZXm/KKOs+DqZv
https://github.com/milo-lab/biomass_distribution/tree/master/MAREDAT_consistency_check
https://paperpile.com/c/C72ZXm/Xrqx
https://paperpile.com/c/C72ZXm/3uvj


51 

taxon within a size fraction, but not across size fractions. The Tara Oceans dataset was collected 

independently of the biomass estimates of the MAREDAT database and can thus serve for cross 

validation. Our goal is to compare those two datasets and see if they agree with each other. 

Therefore, to compare those two datasets we need to convert the data in the MAREDAT database 

to biomass fractions. We focus this comparison on two test cases: the biomass of diatoms and the 

total biomass of nanoplankton and microplankton. 

 

We begin by describing how to compare the biomass estimates of diatoms based on the Tara 

Oceans dataset and the MAREDAT dataset. As the data in those two datasets is structured 

differently, we first need to make corrections to the data so a valid comparison will be available. 

In the Tara Ocean dataset, diatoms appear mainly in the nanoplankton (5-20 µm in diameter) and 

microplankton (20-180 µm) size fractions. In order to make a comparison to the MAREDAT 

database we need to find the corresponding groups in the MAREDAT database. The 

corresponding groups in the MAREDAT database are the microzooplankton and the diatom 

groups (zooplankton between 5 and 200 µm in diameter)1. The total biomass of the diatom and 

microzooplankton groups in the MAREDAT database is ≈1 Gt C with diatoms accounting for 

about 30% of this biomass (0.3 Gt C). The microzooplankton biomass estimates in the 

MAREDAT database do not include copepods, which were moved to the mesozooplankton 

group. Fragile protists such as Rhizaria, are probably also undersampled in the MAREDAT 

database. Therefore, to correct for these effects such that we could compare the MAREDAT and 

Tara Oceans datasets, we remove metazoa (dominated by arthropods) and Rhizaria reads from 

the relevant size fractions in the Tara Oceans dataset (nano and microplakton). After correcting 

for those biases, the biomass fraction of diatoms in microplankton in the Tara Oceans dataset is 

between 16%-33%, which fits well the estimate of ≈30% based on the MAREDAT data (link to 

full calculation). 

 

We also compared the MAREDAT and Tara Oceans datasets, by deriving an independent 

estimate of the total biomass of nanoplankton and microplankton. To generate this estimate, we 

begin with the independently measured biomass of Rhizaria. The independent measurement using 

microscopy by Biard et al. (208) has estimated ≈0.2 Gt C of Rhizaria above 600 µm in diameter. 

We assume that this biomass represents the biomass of Rhizaria in mesozooplankton. As we 

derive in the marine arthropod section, Rhizaria represent ≈40% of the total mesoplankton 

biomass (link to full calculation). The remaining 60% are made up mainly of arthropods. This 

would put the total mesozooplankton arthropods biomass at ≈0.3 Gt C. The total arthropod 

biomass based on the MAREDAT database is estimated to be ≈0.5 Gt C in the sum of the nano, 

micro and mesozooplankton size fractions, which leaves ≈0.2 Gt C of nano and 

microzooplankton arthropod biomass. Based on the Tara Oceans data, the nano and 

microzooplankton arthropod biomass accounts for ≈50% of the total nano and microplankton 

biomass. We use the estimate we just calculated of ≈0.2 Gt C of arthropods in the nano and 

                                                           
1  The biomass of Phaeocystis contains also cells in the relevant size range. Nevertheless, we exclude its 

contribution here due to two main reasons. First, the Phaeocystis group contains also cells above 200µm 

diameter. In addition, several lines of evidence imply that the biomass of Phaeocystis is probably 

overestimated in the MAREDAT dataset (based on MAREDAT paper and the small fraction of 

archaeplastida in the Tara database). Therefore, we exclude this biomass from this specific analysis. 

https://milo-lab.github.io/biomass_distribution/MAREDAT_consistency_check/consistency_with_tara_oceans.html#Diatoms
https://paperpile.com/c/C72ZXm/GAsA
https://milo-lab.github.io/biomass_distribution/MAREDAT_consistency_check/consistency_with_tara_oceans.html#Nanoplankton-and-Microplankton-biomass


52 

microplankton size fractions and combine it with the estimate of the biomass fraction of 

arthropods in the nano and microplankton size fractions from the Tara Oceans dataset. This yields 

an estimate for the total nano and microplankton biomass which is about ≈0.5 Gt C (link to full 

calculation). The biomass of nano and microplankton is estimated at ≈1 Gt C based on the 

MAREDAT database, which is about 2-fold larger than the estimate we got based on combination 

of information from Biard et al. the Tara Oceans dataset and the MAREDAT database. 

  

Cyanobacteria 

For cyanobacteria, a study based on independent data of cell concentrations (265) estimated the 

total number of cells of prochlorococcus and synechococcus, which are estimated at ≈3×1027 and 

≈7×1026 cells, respectively. We assume those two cyanobacterial clades represent a dominant part 

of the global biomass of cyanobacteria. We use the estimate of the total number of those two 

clades, in conjunction with estimates for the carbon content of a single prochlorococcus and 

synechococcus cell (220), which are ≈40 fg cell-1 and ≈250 fg cell-1, respectively. Multiplying the 

number of cells by the average carbon content of a cell, we estimate the total biomass of 

cyanobacteria at about ≈0.3 Gt C. We compare this estimate to the estimate of the biomass of 

cyanobacteria based on the MAREDAT database. Buitenhuis et al. (220) estimate, based on the 

MAREDAT database, the total biomass of picophytoplankton at around ≈0.3 Gt C (link to full 

calculation). Out of this biomass, Buitenhuis et al. estimate ≈31-51% are contributed by 

cyanobacteria. This suggests that the estimate for the total biomass of cyanobacteria based on the 

MAREDAT database is ≈0.2 Gt C. Thus, these two independent estimates are less than 2-fold 

apart. 

 

Comparison of phytoplankton to remote sensing measurements 

The biomass of all phytoplankton can also be assessed based on remote sensing data, which 

calculates the global depth-integrated chlorophyll biomass. Reports by Antonine et al. (266) and 

Behrenfeld & Falkowski (267), which are based on remote-sensing, put global phytoplankton 

biomass at a similar value of ≈0.75 Gt C. Summing up all the biomass contributions of 

photosynthetic organisms in the MAREDAT database, we get ≈1.3 Gt C, which is about 2-fold 

higher but within the same order of magnitude as estimates from remote sensing (link to full 

calculation). 

 

Most of the differences between the estimates based on the MAREDAT database and the 

independently calculated estimates used for the consistency checks are below an order of 

magnitude. Nevertheless, the independent estimates we derived are probably not entirely 

independent of the estimates based on the MAREDAT database, as some of them rely partially on 

data which is used also in MAREDAT-based estimates. Taking into consideration all the different 

consistency checks and caveats associated with the MAREDAT database, we crudely estimate the 

uncertainty of the estimates based on the MAREDAT database, which we report as a fold change 

factor from the mean representing a range akin to a 95% confidence interval of the estimate, to be 

about one order of magnitude. 

  

https://milo-lab.github.io/biomass_distribution/MAREDAT_consistency_check/consistency_with_tara_oceans.html#Nanoplankton-and-Microplankton-biomass
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Comparison of the biomass of producers and consumers 

In Fig. 2C, we analyze the distribution of biomass between producers (autotrophs) and consumers 

(heterotrophs) in the terrestrial and marine environments. In the terrestrial environment, we use 

the biomass of plants as representing the total biomass of terrestrial autotrophs. The remaining 

terrestrial biomass, including soil bacteria (≈7 Gt C), soil archaea (≈0.5 Gt C), soil fungi (≈12 Gt 

C), soil protists (≈1.5 Gt C), and terrestrial animals (≈0.5 Gt C) are considered as terrestrial 

heterotrophs. In the marine environment, the biomass of seagrasses (≈0.1 Gt C), macroalgaea 

(≈0.1 Gt C), picoplankton (≈0.4 Gt C), diatoms (≈0.3 Gt C) and Phaeocystis (≈0.3 Gt C) were 

summed to produce an estimate of the total biomass of marine autotrophs of ≈1.3 Gt C. This 

estimate is about 2-fold higher than estimates of the total autotrophic biomass made by Antonine 

et al. (266) and Behrenfeld & Falkowski (267), based on remote sensing. The remaining marine 

biomass of ≈5 Gt C including marine bacteria (≈1.3 Gt C), archaea (≈0.3 Gt C), fungi (≈0.3 Gt 

C), heterotrophic protists (≈1.1 Gt C) and animals (≈2 Gt C), was considered as marine 

heterotrophic biomass. We consider all heterotrophic organisms as consumers, and thus we 

include detritivores as part of the consumer biomass. We note that even if we will consider only 

animal biomass as consumers, the marine animal biomass (≈2 Gt C) is higher than the biomass of 

all marine producers. 

Viruses 

We provide a fully detailed calculation for the following analysis, including all of the data as well 

as the steps taken to achieve these results, in the following link. 

 

Viruses are often introduced as the most abundant biological entity in terms of the number of 

individuals in the world. To estimate their global biomass, we first focus our efforts on 

bacteriophages. An often-quoted rule of thumb is that bacteriophages are ≈10 times more 

numerous than their bacterial and archaeal hosts. Recent studies have revisited and broadly given 

further support for this claim in the marine environment (268), in the marine deep subsurface 

(269) and in the terrestrial deep subsurface (270). We can thus use the specific relation between 

the number of viruses and prokaryotes described in each environment, along with our estimates 

for the number of prokaryotes in each environment (see relevant sections in the SI Appendix) to 

estimate the total number of bacteriophages. Alternatively, we can also extrapolate the total 

number of bacteriophages from direct measurements of the concentration of bacteriophages 

particles. We use the later approach in cases where no reliable data regarding the ratio between 

bacteriophages and viruses are available, such as in soils, or in cases in which there is enough 

direct data on bacteriophage concentrations for a robust estimate that is not dependent on the 

estimate for the total number of prokaryotes.  

 

We proceed to describe the procedure for estimating the total number of bacteriophages in each 

environment. For the marine environment, we relied on data in Wigington et al. (268) which 

provided ≈6000 samples of virus concentration in the ocean. We binned the data along the depth 

of the ocean. For each bin we calculated the mean concentration of viruses. We then multiplied 

the mean concentration of viruses in each bin by the total volume of that bin to calculate the total 

https://paperpile.com/c/C72ZXm/POey
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number of viruses in each bin. Finally, we summed up the estimates for the total number of 

viruses in each bin to calculate the total number of viruses in the ocean. Our best estimate for the 

total number of viruses in the ocean is ≈2×1030 (link to full calculation). For the marine deep 

subsurface environment, we use two recent studies (269, 271) which counted the number of 

prokaryotes and virus particles in five different sediment types, which cover a broad range of 

characteristics such as sedimentation rates, total organic carbon, sediment age, and microbial 

activity. To estimate the total number of bacteriophages in the marine deep subsurface, we used 

the geometric mean of ratios between the number of virus particles and the number of bacteria 

and archaea. The geometric mean of the ratios is ≈12 (link to full calculation). As noted in the 

marine deep subsurface prokaryotes section, our best estimate for the number of bacterial and 

archaeal cells in the marine deep subsurface is ≈4×1029 cells. Using the ratio between viruses and 

prokaryotes in Engelhardt et al. (269), we estimate a total of ≈5×1030 viruses in the marine deep 

subsurface (link to full calculation). For the terrestrial deep subsurface, the relation between 

number of virions and cells was measured in only a handful of locations. In addition, 

measurements of viral concentrations were done in aquifer waters, and thus it is not clear what is 

the concentration of phages attached to surfaces. The number of attached cells in the terrestrial 

deep subsurface is claimed to be much higher than the number of suspended cells in aquifers, and 

it is not clear if this claim holds true also for viruses. Therefore, we generated several estimates of 

the total amount of viruses in the terrestrial deep subsurface. We used five types of estimates for 

the virus to prokaryotes ratio. The first estimate is based on assuming a 10:1 ratio. As an 

alternative estimate we used the relation between the number of viruses and prokaryotes 

measured in the marine deep subsurface (269). We used this relation along with the concentration 

of prokaryotes at each depth in the terrestrial subsurface, taken from McMahon & Parnell (98). 

As a third estimate for the ratio between viruses and prokaryotes in the terrestrial deep subsurface 

we used the relation between the number of viruses and prokaryotes measured in the terrestrial 

deep subsurface by Kyle et al. (270). Our fourth estimate is based on an average ratio of 3 

between viruses and prokaryotes measured by Pan et al. (272). The fifth estimate is based on an 

average ratio of 2 between viruses and prokaryotes measured by Roudnew et al. (273). In order to 

use these five estimates for the ratio between viruses and prokaryotes, we need to feed them with 

the number of prokaryotes in the terrestrial deep subsurface. We plug into these five estimates our 

estimate for the number of prokaryotes in groundwater (see the section on the biomass of 

terrestrial deep subsurface prokaryotes for details on the calculation of the total number of 

prokaryotes in groundwater). We thus generate five estimates for the total number of 

bacteriophages in groundwater. It is not clear whether these relations between the concentration 

of bacteriophages and prokaryotes refer only to unattached cells or includes also attached cells. 

The total number of bacteriophages we estimated using the five methodologies detailed above 

take into account only unattached bacteriophages (in groundwater). In order to take into account 

the possible contribution in groundwater of bacteriophages which are not planktonic, we use a 

scaling factor that will convert our estimate for the total number of bacteriophages in groundwater 

to an estimate for the total number of bacteriophages in the terrestrial deep subsurface. As our 

best estimate for this scaling factor, we use a geometric mean of three estimates. The first takes 

into account only bacteriophages in groundwater (and thus the scaling factor is 1), and the other 

two assume a ratio between attached to unattached bacteriophages which are similar to the ratios 

between attached and unattached cells in the terrestrial deep subsurface. The ratios used for the 
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other two estimates are 102 and 103 which are the lower and higher bounds for the ratios between 

the number of attached and unattached cells reported in McMahon & Parnell (98). We multiply 

our five estimates for the number of bacteriophages in groundwater by the scaling factor to 

generate five estimates for the total number of bacteriophages in the terrestrial deep subsurface. 

We take the geometric mean of the different estimates, which is ≈2×1030, as our best estimate for 

the total number of viruses in the terrestrial deep subsurface (link to full calculation). As for soil 

viruses, after searching the literature, we could find only a handful of sources for the abundance 

of viruses in soils. The values found are about ~108-109 virions per gram of soil (274, 275), which 

translates to ~1014-1015 viruses per m-3. Applying this value across the entire terrestrial surface 

and assuming a mean soil depth of 10 meters (276), we get to an estimate of ~1029-1030 virions in 

soil globally. This is probably an overestimate of the total abundance of bacteriophages in the soil 

as they are probably not as abundant in lower layers as in the uppermost layers of soil, because of 

the lower cell abundances in those layers. We use the geometric mean of the lower and upper 

range of our estimate, which is ≈6×1029 as our best estimate for the number of viruses in the soil 

(link to full calculation). 

 

Viruses are also present in fluids inside the oceanic crust (277). This habitat is much less explored 

than subseafloor sediments, and thus estimates of the total abundance of viruses in the ocean’s 

crust are more speculative. Nigro et al. (277) estimate that viruses are about an order of 

magnitude more abundant than bacteria and archaea also in the oceanic crust. We estimate a total 

of 2×1028-2×1029 bacterial and archaeal cells in the oceanic crust (see marine deep subsurface 

prokaryotes section). Thus, we can crudely estimate 2×1029-2×1030 viruses in the oceanic crust. 

Including the contribution from this environment will thus not change our results dramatically, as 

even the higher estimate is only ≈20% of our estimate for the global number of viruses. Due to 

the extreme scarcity of data on the abundance of viruses in the oceanic crust, we do not include 

them in the current analysis. We highlight this knowledge gap in the discussion section of the 

paper main text. 

 

We combine the number of viruses in each environment and generate an estimate for the total 

number of viruses of ≈1031 (link to full calculation). Because of the vast dominance of bacteria 

over eukaryotes in terms of number of cells, it is probable that bacteriophages dominate the 

abundance of all viruses. Bacteriophages have a characteristic capsid diameter of ≈50 nm (278; 

link to full calculation). Though some of the largest viruses known are ~1000 times larger in 

volume than a typical bacteriophage, we expect them to be less abundant by a much larger factor 

and thus will not significantly change the dominance of bacteriophages over eukaryotic viruses 

biomass. To estimate the total biomass of viruses, we multiply the total number of viruses by a 

characteristic mass of a virus (in our case, a bacteriophage). To estimate the characteristic mass of 

a bacteriophage, we rely on a biophysical model of the elemental composition of a virion (279). 

Plugging into the formulas detailed in (279) a characteristic radius of 25 nm (based on a 

characteristic diameter of 50 nm; 278), we estimate that a characteristic bacteriophage contains 

about ≈0.02 fg C (link to full calculation). To estimate the total biomass of viruses, we multiply 

the characteristic carbon content of ≈0.02 fg C by our estimate for the total number of viruses of 

≈1031 and arrive at a total biomass of ≈0.2 Gt C (link to full calculation). 
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As a consistency check for the estimate of viral biomass, we inspect the ratio between the global 

viral and bacterial biomasses. Our estimated biomass for viruses is approximately ≈0.1% of the 

total bacterial biomass. We use the fact that viruses are dominated by bacteriophages, which have 

a characteristic diameter of ≈50 nm. The rule of thumb diameter of a bacterium is on the order of 

1 µm. This means that in terms of volume, viruses will have ≈1:104 of the volume of a bacterium. 

Even if highly packed, the dry mass density of viruses cannot increase by more than 2-fold above 

bacteria which are already ⅓ dry matter by mass. Viruses are on average about 10 times more 

abundant than bacteria (268), which means that the global biomass of viruses is indeed 1% or less 

of bacterial biomass, even when considering the fact that most deep subsurface bacteria are up to 

an order of magnitude smaller in mass than the standard lab bacterium. 

 

We now analyze the associated uncertainty of the estimate for the total biomass of viruses, which 

we report as a fold change factor from the mean representing a range akin to a 95% confidence 

interval of the estimate. The main parameters affecting the estimate are the number of bacterial 

cells in each environment, the ratio between bacterial cells and virions, the size of the virions and 

their carbon content. Each environment in which bacteria are abundant (namely, marine, soil, 

marine deep subsurface and terrestrial deep subsurface) has its own ranges of uncertainty 

regarding the number of cells and the ratio between viruses and bacteria. We survey the different 

ranges of uncertainty of the number of bacterial cells and the ratio between viruses and bacteria. 

Then, we discuss the uncertainties in the sizes of viruses and their carbon content. 

 

For soils, there are no good indicators for the uncertainty of our estimate of the total number of 

phages. The range of ~108−109 phages per gram of soil introduces an uncertainty of about an 

order of magnitude. The specific values of the bulk density of soils, as well as the depth of soils 

also have uncertainty associated with them, which is hard to quantify. Our estimate is likely to be 

an overestimate, as it likely that the concentration of phages in deeper soil layers will be lower 

than in shallower layers, as is for prokaryotes. We thus project very crudely an uncertainty of one 

and a half orders of magnitude associated with our estimate of the number of phages in soils. 

Because the total number of viruses in soils is relatively small (our best estimate for the total 

number of viruses in soils is ≈6×1029, which is ≈6% of the total number of viruses we estimate 

worldwide), we expect the uncertainty associated with the total number of viruses in soils not to 

affect our estimate of the total number of viruses significantly. 

 

For the terrestrial deep subsurface, our estimate relies on three main factors. The first factor is the 

ratio between the concentration of viruses and prokaryotes. The second factor is the total number 

of prokaryotes we plug into the ratio between viruses and prokaryotes in order to estimate the 

total number of bacteriophages. The third factor is the scaling factor for the total number of 

viruses in groundwater and the total number of the number of viruses in the terrestrial deep 

subsurface. For the uncertainty associated with the ratio between the concentration of viruses and 

prokaryotes, we relied on five different ratios from different sources, as detailed above. We rely 

on the variability between these five different ratios to calculate the uncertainty associated with 

the ratio of the number of viruses and bacteria in the terrestrial deep subsurface. We arrive at an 

uncertainty of ≈2-fold associated with the ratio of viruses and prokaryotes in the terrestrial deep 

subsurface (link to full calculation). For uncertainty associated with the total number of 
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prokaryotes we plug into the relation between the concentrations of viruses and prokaryotes, we 

propagate our uncertainty about the number of prokaryotes to the estimate of the total number of 

bacteriophages. We use two estimates for the total number of prokaryotes in groundwater - one 

based on arithmetic mean concentration of cells at each depth bin and one based on geometric 

mean concentration of cells. We calculate the amount of uncertainty using each of those estimates 

introduces into the final estimate of the total number of bacteriophages. We arrive at an 

uncertainty of ≈2-fold (link to full calculation). For the scaling factor between the number of 

viruses in groundwater and the total number of viruses in the terrestrial deep subsurface, we 

calculate the 95% confidence interval of the geometric mean scaling factor as a measure of the 

uncertainty associated with the scaling factor. We arrive at an uncertainty of ≈50-fold associated 

with the scaling factor (link to full calculation). Combining the uncertainty associated with the 

three different factors, we calculate a total uncertainty of ≈60-fold associated with our estimate of 

the total number of viruses in the terrestrial deep subsurface (link to full calculation). 

 

For the number of bacteriophages in the marine environment and in the marine deep subsurface, 

could not find a methodology which we believe represents well the uncertainty associated with 

our estimate. We therefore chose to use an uncertainty of about one and a half orders of 

magnitude for both the number of bacteriophages in the marine environments and in the marine 

deep subsurface. We hope further studies could come up with a better methodology for assessing 

the uncertainty of the estimate of the total number of bacteriophages in those environments. 

We combine the uncertainties associated with the estimates of the total number of viruses in each 

environment, and arrive at a total uncertainty of about 13-fold for the total number of viruses 

globally (link to full calculation).  

 

To quantify the uncertainty associated with the size range of viruses, we use data from Brum et 

al. (278) on marine viruses. The uncertainty of the average diameter of marine viruses is less than 

2-fold (link to full calculation). This estimate doesn’t take into consideration the fact that viruses 

from other environments might have different size ranges. Nevertheless, bacteriophages isolated 

from deep terrestrial deep subsurface (280) are also in the same range. We propagate the 

uncertainty in the diameter of bacteriophages into our estimate for the carbon content of a single 

bacteriophage, which results in an uncertainty of ≈2-fold (link to full calculation). We combine 

this uncertainty in our estimate of the radius of bacteriophages with the uncertainty the 

parameters of the biophysical model introduce into the estimate of the carbon content of 

bacteriophages. The uncertainty of the parameters of the model are detailed in Jover et al. (279). 

Overall, we project an uncertainty of ≈2-fold associated with our estimate of the carbon content 

of a single bacteriophage (link to full calculation). We note a caveat in regard to the carbon 

content of viruses due to the fact that we estimate the same carbon content for both archaeal and 

bacterial viruses, even though archaeal viruses are highly diverse (281). Nevertheless, the relative 

biomass of bacteria is higher than that of archaea, and thus it is likely that bacterial viruses are 

more abundant that archaeal viruses. 

 

Combining the uncertainty of the number of cells in the deep terrestrial deep subsurface with the 

uncertainty of the ratio between viruses and bacteria, and also the uncertainty of the size of 

viruses and their carbon content, we project a total uncertainty of about ≈15-fold (link to full 
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https://milo-lab.github.io/biomass_distribution/viruses/phage_num/terrestrial_deep_subsurface/terrestrial_deep_subsurface_phage_num.html#Uncertainty-estimate
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calculation). Due to the scarcity of data on the different parameters used to estimate the total 

biomass of phages, we use a higher uncertainty projection of ≈20-fold. 

Other Animal Phyla 

In this work, we survey the biomass of key kingdoms in the tree of life. For all kingdoms except 

animals, estimates on the biomass of those kingdoms is made in a top-down manner, where the 

biomass of all the different taxa making up the kingdom are considered together. This is largely 

due to the morphological similarity between organisms in a kingdom, or because of technical 

capabilities that allow to estimate the entire biomass of the kingdom, like the quantification of 

chlorophyll. For animals, however, the large diversity of life forms and the distribution of animals 

both on land and at sea doesn’t allow a top-down approach to estimation of animal biomass. 

Therefore, for estimating the biomass of animals, we use a bottom-up approach, which estimates 

the biomass of key phyla constituting the animal kingdom, and the sum of the biomass of those 

phyla represents our estimate of the total biomass of animals. For some phyla, such as 

echinoderms and bryozoans, we could not find explicit data in the literature to support a full-

fledged biomass estimate. We try to estimate bounds for the possible biomass contribution for 

these remaining phyla. Most of the remaining phyla not covered by the analysis are aquatic, and 

for the large part, benthic organisms. The only major phyla which are terrestrial are tardigrades 

(water bears) and rotifers. The available data suggest that the biomass contribution of those taxa 

is negligible when considering the entire animal biomass (146, 282). Therefore, putting a bound 

on the global benthic biomass could serve as an upper estimate of their biomass which we now 

proceed to infer. 

  
Benthic phyla biomass 

As part of the Census of Marine Life (283), a decade long international scientific effort to assess 

the diversity, distribution and abundance of marine life, Wei et al. (87) reported an estimate of 

≈0.1 Gt C for the global benthic biomass, with bacteria contributing ≈30% of this biomass. Thus, 

we are left with ≈0.06 Gt C of eukaryotic benthic biomass. There are, however, several caveats 

associated with this estimate, as the estimate is related mainly to muddy surfaces in the ocean, 

and doesn’t take into account possible biomass hotspots such as seamounts, submarine canyons 

and trenches, hydrothermal vents and cold seeps. Additionally, it doesn’t take into account 

contribution from benthic foraminifera, which can sometimes account for more than 50% of 

eukaryote biomass in specific sites (284).  

We try to estimate the contribution of seamounts and canyons from local biomass density 

samplings. For seamounts, high megafaunal biomass densities were measured in the southwest 

Pacific seamounts (285). About ≈70 g C m-2 of megafaunal biomass were estimated, as opposed 

to ≈20 g C m-2 megafaunal biomass in the so-called slopes with comparable depth which are not 

associated with seamounts. Multiplying this biomass density with the total seamount area of 

≈9×1012 m2 (212), we get an estimate of ≈0.6 Gt C. This estimate only considers megafaunal 

biomass. On the other hand, this reference is based on comparison to non-seamount area and for 

those it uses a much higher value than a previous report (87). It is thus unclear if this is an under- 

or over-estimate. For submarine canyons, megafaunal biomass density was estimated at 89 g C m-

2 in the Kaikoura Canyon on the eastern New Zealand margin (286). This reported biomass is 

https://paperpile.com/c/C72ZXm/mA7r+bivK
https://paperpile.com/c/C72ZXm/DWe4
https://paperpile.com/c/C72ZXm/nuWv
https://paperpile.com/c/C72ZXm/Llhw
https://paperpile.com/c/C72ZXm/Wn7u
https://paperpile.com/c/C72ZXm/Aav9
https://paperpile.com/c/C72ZXm/nuWv
https://paperpile.com/c/C72ZXm/ELoi


59 

≈100 fold larger than values reported for general deep-sea environment (87). Such high biomass 

density was estimated to be present in ≈15% of all submarine canyons (286). The total submarine 

canyon area is roughly ≈4×1012 m2 (212), so the total estimate for megafaunal biomass in canyons 

is ≈0.06 Gt C. For trenches, benthic biomass was estimated to be on the order of ≈10 g C m2 

(287). The global area of oceanic trenches is ≈2×1012 m2 (212), so the total trench benthic 

biomass is estimated at ≈0.02 Gt C. For benthic foraminifera, we use a geometric mean of 

previously reported biomass densities (284), which is roughly ≈0.16 g C m-2, and multiply this 

density with the global surface area of the sea, which is ≈3.6×1014 m2. This yields a global 

biomass estimate of ≈0.05 Gt C. 

For hydrothermal vents, biomass densities on the order of ≈1000 g C m-2 were reported in several 

locations (288). A current map of active hydrothermal vents estimates ≈500 active sites (289). 

Assuming a characteristic area of a vent of ≈106 m2 (290) we estimate a global biomass of 

≈0.0005 Gt C. 

All in all, we estimate the global benthic biomass to be smaller than 1 Gt C. It is important to 

remember, however, that most of the studies surveying biomass hotspots are focused on 

megafauna or macrofauna, so data on other animal groups is underrepresented. Although 

estimates for each contribution to the total benthic biomass are coarse, we believe 1 Gt C is a 

probable upper bound for the benthic biomass. From this upper bound estimate, we can infer that 

benthic biomass will not change dramatically the distribution of biomass presented in this work. 

Because this is only an upper bound and the real value might be much lower this benthic biomass 

was not portrayed in the figures and table in the main text of the work. 

Pre-human biomass 

The impact of humans on the distribution of biomass on Earth has begun long before present 

times. For example, a large extinction event, the Quaternary Megafauna Extinction, which 

occurred 50,000-7,000 years ago, is at least partially explained by human hunting and habitat 

alteration (175). This extinction claimed a half of megafaunal species (defined as species 

weighing over 100 lb, i.e. 44 kg). We estimate the total wild mammal biomass before the 

Quaternary Megafauna Extinction event and compare it with present day values. The overall 

biomass of wild mammals is dominated by large mammals, i.e megafauna (173). Moreover, the 

estimated megafauna biomass before the Quaternary Megafauna Extinction event is dominated by 

mammals (175). Therefore, the biomass values of megafauna given below are a good 

approximation to to the overall biomass of wild mammals. The global biomass of terrestrial 

megafauna before the Quaternary Megafauna Extinction event is estimated to have been around 

≈0.02 Gt C (175). The global biomass of marine wild mammals before human exploitation is 

estimated at ≈0.02 Gt C (178). The total wild mammal biomass before the Quaternary Megafauna 

Extinction event of ≈0.04 Gt C is about 6-fold higher than the ≈0.007 Gt C of extant wild 

mammal biomass. We cannot currently derive the uncertainty associated with the change in wild 

mammal biomass before and after human civilization, as we do not have a projection for the 

uncertainty associated with the pre-human wild land mammal biomass. We hope further research 

will help better assess the certainty of estimates regarding the biomass of pre-human wild land 

mammals. As for the pre-human marine wild mammal biomass, Christensen (178) reports a 95% 

confidence interval of ≈1.3-fold. Regarding the change in wild marine mammal biomass, 
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Christensen reports a range of 2.4-fold to 7-fold. At the same time that the biomass of wild 

megafauna collapsed, the biomass of humans gradually increased over the same period. Since the 

industrial revolution we have witnessed an exponential increase in human population, as well as a 

rapid increase in the domesticated livestock biomass. Today, the biomass of livestock (≈0.1 Gt) is 

an order of magnitude larger than that of all the terrestrial wild megafauna before the Quaternary 

Megafauna Extinction. Even the biomass of humans alone (≈0.05 Gt) is around twice the size of 

the biomass of all wild megafauna before the Quaternary Megafauna Extinction event. In addition 

to the influence humans had on mammal biomass, the expansion of human population in recent 

centuries has dramatically changed many habitats. One prominent impact humans have had on 

wild populations was caused by fishing. In order to estimate the relation between current fish 

biomass and pre-human fish biomass, we rely on models of fishery ecology (291), in conjunction 

with data on the current state of fisheries. A recent study (292), surveyed the status of fisheries 

which account for ≈80% of the global fish catch, and estimated that fish biomass is ≈120% of the 

biomass which will ensure maximum sustainable yields (see Table S12 in Costello et al). Costello 

et al. puts current fisheries biomass at ≈0.84 Gt wet weight (292), or ≈0.13 Gt C, which is on par 

with previous estimates for the non-mesopelagic fish biomass (161). Using a database of 

published landings data and stock assessment biomass estimates, Thorson et al. (293) estimate 

that the biomass of fish at the maximum sustainable yield represent ≈40% of the biomass the 

population would have reached in case of no fishing. From these studies, we estimate that before 

human civilization started fishing, the biomass of fisheries was ≈2-fold larger than current values 

(1/0.4×1/1.2). If we take estimates for present day fisheries biomass at ≈0.13 Gt C, this translated 

to ≈0.27 Gt C of fisheries before human civilization (link to full calculation). Assuming that the 

biomass of mesopelagic fish was not influenced significantly by fishing, we estimate the total 

global biomass of fish before human civilization across all depths at ≈0.8 Gt C. Many of the 

impacts humans had on the biomass of wild populations are hard to quantify, as accurate 

estimates of the standing stocks of fauna before human development are missing. For plants, 

however, some estimates are available. The biomass of plants is dominated by trees. Estimates 

put the global biomass of trees before human civilization at around twice its current value (294). 

As plants are the dominant fraction of global biomass, this means that humans have reduced the 

total biomass of the biosphere to about half of its pre-human value. 

Microbiomes 

The microbiome, the set of commensal, symbiotic and pathogenic microbes that reside in the 

body of a host organism, has gained increasing attention due to its role in health and disease. Here 

we focus on animal microbiome and quantify their contribution to global biomass of prokaryotes. 

In their pioneering study, Whitman et al. (25) estimated the contribution of prokaryotes residing 

in humans, livestock and termites. They showed the contribution from those sources to the global 

pool of prokaryotes in negligible (about one millionth of the total number of prokaryotes). A 

recent study (295) found an allometric relation between the number of prokaryotes in the 

microbiome of various animals and the mass of the host. They find that the number of microbes 

per animal scales like 7.86×108×M1.07, where M is the wet weight mass of the animal in units of 

gram wet weight. This power law fits the data impressively well (R2=0.94). The fact that the 

power of the exponent is very close to one suggests that this relation can also be expressed in 
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linear terms. Indeed, a linear fit of the data yields a relation of 3.4×109×M, still with a high 

correlation coefficient (R2=0.8). The authors then used these relations, along with an estimate of 

the total mass of animals to produce a global estimate of ≈2×1025 microbial cells associated with 

animals. The estimates for the total mass of animals the authors used are based on previous 

studies, and one of our main results is an updated account of the total mass of animals. We thus 

apply the allometric relation found in their study to the updated total animal biomass which we 

estimate of 3 Gt C. As we estimate the biomass of animals in weight of carbon, and the allometric 

relation refers to wet weight, we translate our estimate to wet weight by dividing it by 0.15, the 

ratio of carbon to wet weight assuming ≈70% water content and ≈50% carbon content out of dry 

weight. This yields an estimate of ≈20 Gt wet weight of animals. Applying the linear relation 

found in their paper (295), we estimate a total of ~1026 microbial cells associated with animals. 

This is indeed a tiny fraction of the total estimated number of prokaryotic cells (≈1030). Assuming 

an E. coli like carbon content per prokaryotic cell of ≈150 fg C, the total mass of animal 

associated microbes will be ~0.01 Gt C. 

Inland water 

In our study we concentrate on estimating the biomass in marine, terrestrial or deep subsurface 

environments. Biomass is also present in inland waters such as lakes or rivers, but its contribution 

to the global biomass of each taxon is negligible due to the small area which inland waters cover. 

Recent reports estimate the total area covered by lakes at ≈3×106 km2 (296). In order to estimate 

the maximum contribution of the biomass inland waters could have, we multiply this area by the 

maximum biomass concentration per area reported for phytoplankton, zooplankton and fish 

across 24 lakes worldwide (297). Summing up the maximum possible contribution from each 

group yields a biomass concentration of ≈50 g C m-2. Multiplying this concentration by the global 

area of lakes constrains the total biomass present in inland waters below ≈0.15 Gt C, which is still 

negligible compared to contributions from other environments. 

Abundance estimates  

General 

We provide detailed derivation for the estimate of the number of individuals in each taxon. For 

some groups, the estimate of the number of total individuals has already been derived as a part of 

estimating the global biomass of the group. For other groups, additional steps were needed in 

order to estimate their total number of individuals. Here, we discuss the groups for which 

estimates are already available. In the sections below, we give explain in more detail the 

estimates of specific groups for which additional work was needed. For plants, we estimate the 

total number of trees, based on a recent study (294). Including all plant species will definitely 

increase the estimate dramatically, but due to the high diversity of species and characteristic sizes 

of different plant species, it is very difficult to estimate the total number of plants in the 

biosphere. For annelids and nematodes, we use our biomass estimates and divide them by the 

mean individual body mass that was used by Fierer et al. (144) to estimate their biomass 

densities. For humans, we rely on the UN estimate of the global population. For livestock we rely 
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on the FAOStat database (http://faostat3.fao.org/; domain: Production/Live animals). For birds, 

we rely on estimates for the global population of birds (180). 

  
Archaea and Bacteria (Prokaryotes) 

For marine prokaryotes, as well as marine and terrestrial subsurface prokaryotes, in order to 

estimate the global biomass, we estimate the total number of cells, and multiply it by the average 

cell mass. Thus, for those groups an estimate of the total number of cells is already contained in 

the estimate of their global biomass (1.2×1029, 4×1029 and 2×1030 respectively). We calculate the 

number of bacteria and archaea out of the total population of prokaryotes using our estimates for 

their relative fraction out of the biomass of prokaryotes, assuming the size of bacteria is not 

significantly different than the size of archaea. For soil prokaryotes, however, biomass estimates 

are based on measurement of total microbial biomass. Therefore, we take the total biomass 

estimate and divide it by a characteristic cell mass. We use the same masses of bacteria from 

other environments of ≈30 fg C cell-1 (298). As we estimate about 8 Gt C of soil prokaryote 

biomass, we estimate about ≈3×1029 prokaryotic cells in the soil. From the total number of 

prokaryotes in the soil, we estimate the number of bacteria and archaea by using their estimated 

fractions out of the total biomass of prokaryotes. Even though soil archaea are smaller than soil 

bacteria, and thus we probably underestimate the number of soil archaea, this will not affect the 

estimate for the total amount of archaea as the contribution from soil archaea is small. 

  
Fungi 

When estimating the biomass of fungi globally, we use estimates for the total microbial biomass 

in the soil, as well as estimates for the fraction of soil microbial biomass which is fungal. In 

addition, we use estimates of the biomass fraction of mycorrhiza out of fine-root biomass. As 

these estimates do not rely on estimating the total number of fungal cells, we derive our estimate 

for the total number of fungal cells by dividing our biomass estimate by an average carbon 

content per fungal cell. We very roughly estimate the volume of fungal cells to be ≈100 µm3 

(299), and thus we estimate a carbon content of a cell to be ≈15 pg C cell-1. Dividing our estimate 

for the total fungal biomass of ≈12 Gt C by the average carbon content per fungal cell, we get 

~1027 fungal cells globally (link to full calculation). 

  
Molluscs 

The estimate of the biomass of pteropods is based on a database which contains both abundance 

data and species description. This data was converted to biomass based on the average mass of 

each species. In order to estimate the number of individual pteropods, we use the data from the 

MAREDAT database (300) crudely divide the average biomass density of pteropods by the 

average population density of pteropods. This gives us an average mass of individual pteropods. 

We get an average individual mass of ≈0.3 mg C per individual pteropod. We estimate the total 

biomass of pteropods to be ≈0.15 Gt C. Dividing the global biomass of pteropods by the average 

mass of an individual pteropod brings the total number of individual pteropods to be around 

5×1017 (link to full calculation). 

  

http://faostat3.fao.org/
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Fish 

In order to estimate the total number of fish, we rely on our estimate for the total biomass of fish 

of ≈0.5 Gt C and estimate the mean mass of an individual mesopelagic fish, as mesopelagic fish 

are the main contributor to the total fish biomass. In order to estimate the mean mass of an 

individual mesopelagic fish, we use empirical allometric relations between fish length and mass, 

along with ranges for the lengths of different mesopelagic fish species (301). From the available 

data, we estimate an average individual mass of ≈0.5 g C per fish (link to full calculation). This 

brings our estimate of the total number of mesopelagic fish to ≈1015 fish. 

  
Arthropods 

For terrestrial arthropods, we rely on the estimate made originally by Williams (195) of 1017-1019. 

We use the geometric mean of 1018 as our best estimate. For marine arthropods, we estimate the 

total number of individuals to be dominated by copepods, as they are usually on the lower end of 

the marine arthropod body size while still representing a large fraction of the marine arthropod 

mass. The estimate of the biomass of copepods is based on the estimate of mesozooplankton 

biomass, as it is defined to contain all copepod biomass (206). Copepods vary in size, some are 

considered microzooplankton, while others are considered either mesozooplankton or 

macrozooplankton. As all copepod biomass was concentrated under the mesozooplankton group, 

we do not know the partitioning of biomass between size classes, so we assume they are all 

mesozooplankton. The values reported in the literature (302, 303), range from 0.15 µg C to 100 

µg C (we note this is based on a rather limited number of sources). We take the geometric mean 

of this range, which is ≈4 µg C per individual. The total biomass of mesozooplankton is ≈0.6 Gt 

C, so by dividing the total biomass by the estimated mass of an individual copepod we get ~1020 

copepods (link to full calculation). 

  
Cnidaria 

The biomass of cnidarians was estimated by using a database of densities of individuals, along 

with estimates of the mean mass of each species of cnidarian. In order to estimate the total 

number of cnidarians, we use several measures of the characteristic mass of an individual 

cnidarian. The median mass of an individual cnidarian is ≈0.5 mg C (211). The total estimate of 

planktonic cnidaria is ≈0.05 Gt C. This means that the estimate for the total abundance of cnidaria 

is ~1017. If instead of using the median value we use the average mass value we get ≈7 g C per 

individual (211), which translates into ≈7×1015 individual cnidarians. The geometric mean of both 

estimates is ≈2×1016 individuals. If we decide to take the average density of individuals from the 

database and extrapolate it globally to the top 500 m we get ≈1016 individuals. Our best estimate 

is the geometric mean of these three methods, which is ≈2×1016 (link to full calculation).  

 

Protists 

The biomass of protists is composed of 0.4 Gt C nano-pico protists, 0.5 Gt C microzooplankton, 

0.5 Gt C Diatoms, 0.5 Gt C Phaeocystis. As the nano-pico are the smallest and have a comparable 

overall biomass to the other class sizes, they will dominate the abundance of protists. The 
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diameter range of pico-nanoplankton is 0.8-5 µm. We use the geometric mean of the radius range, 

which is ≈1 µm. This means that the mean cell volume is ≈4 µm3. Using the conversion equation 

between biovolume and carbon content reported in Pernice et al. (132), we estimate an average 

single protist will have ≈0.8×10-12 g C cell-1 (link to full calculation). Dividing the total 0.4 Gt C 

by the carbon content of a single cell we estimate ~1027 protist cells. For terrestrial protists, we 

estimate the total number of individuals in the process of estimating their total biomass. We 

estimate a total of ≈3×1025 terrestrial protists, which is much lower than our estimate of ~1027 

marine protists. 

 

Usage of various estimators of the mean 

As we note in the methods section of the main text, in order to generate global estimates based on 

local sampling, we calculate average values from all available peer-reviewed literature sources 

we could find and extrapolate from them to the global scale. There are two distinct types of 

averages we calculate. The first is calculating a characteristic value from different independent 

measurements, for example, calculating the characteristic carbon content of bacteria, from 

different studies which report different carbon content values. In this case, we consider the 

reported values from different studies to be independent samples from the distribution of the 

carbon content of bacteria. Deviations between values reported in different studies are often the 

result of different measurement methodologies or biases rather than actual differences in the 

populations sampled. In such cases we use the geometric mean of the values from the different 

studies as our best estimate, because we assume, for lack of better knowledge, that the 

measurement error, in this specific example the measurement error of the carbon content of 

bacteria, is multiplicative rather than additive. The distribution is thus better approximated as log-

normal than normal and the geometric mean gives the most probable value.  
 
The second kind of average values we calculate is when we use different samples of the 

population density of organisms in the environment and calculate the global average population 

density. In this case, even if the samples are log-normally distributed, the arithmetic mean gives 

the average population density, as it allows, for example, especially high values to shift the 

average. Yet using the arithmetic mean of the samples has the disadvantage of being more 

susceptible to biases in oversampling singular locations with high values which are often 

locations of research interest, such as blooms in the case of phytoplankton. Using the arithmetic 

mean in this case might lead to a large overestimate. On the other hand, using as an alternative the 

geometric mean of the samples might underestimate the true average population density as it will 

reduce the effect of biologically relevant high population densities, which are the result of 

heterogeneous distribution of organisms across the globe. As each method has advantages and 

disadvantage, we chose throughout our analysis to calculate the average population density based 

both on the arithmetic mean and based on the geometric mean. We treat these two average 

population densities as two estimates of the actual average population density. As our best 

estimate of the average population density we use the geometric mean of these two estimates (i.e. 

the geometric mean of the arithmetic and geometric means). This approach, while not standard, 

was chosen as it increases our robustness to the possible biases discussed above. A most standard 

approach could be to use the median over the reported values, though it will also reduce the effect 

of locations with especially high population density. For comparison, we analyzed our results also 

https://paperpile.com/c/C72ZXm/Za3R
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using this alternative approach of taking the median and found it does not change our final results 

beyond the multiplicative standard deviation of our estimates, thus showing that our estimates are 

robust well within the uncertainty we report. 
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Supplementary Figures and Tables 

 

 

Fig. S1. A graphical representation of the global living biomass distribution. 
Absolute living biomass abundances of different taxa are represented in a Voronoi diagram, with 

the area of each cell being proportional to that taxa global biomass. The specific shape of each cell 

has no meaning. Values are based on the estimates presented in Table 1. For plants, we exclude the 

biomass of stems and tree-trunks, as it is mostly composed of non-living lignified tissue. For 

prokaryotes and viruses, we exclude deep subsurface biomass as the prokaryotes in those 

environments are metabolically “dormant”. 
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Fig. S2. The relation between abundance and biomass of different taxa. 
The total number of individuals in each taxon is plotted against the total biomass of the taxon. The 

error bars reflect our uncertainty projection of the biomass estimate. 
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Fig. S3. The relation between species richness and biomass of different taxa. 
The total number of species in each taxon is plotted against the total biomass of the taxon. The error 

bars reflect our uncertainty projection of the biomass estimate. Bacteria, archaea and viruses are 

not included as the definition of species is problematic. We note that even for fungi and protists the 

estimate for the number of species may not be robust. 
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Fig. S4. Comparison of graphical representation of the global biomass distribution using 

pie-charts versus Voronoi diagrams.  
We find that using pie charts that are effectively a one-dimensional presentation modality, the 

ability to perceive small contributors to the global biomass is severely compromised. (A) 

Visualization of the distribution of global biomass across the kingdom of life. Compared to the 

Voronoi diagrams shown in C, due to the inherently lower dynamic range, the contribution of taxa 

such as protists can hardly be observed and that of viruses is not visible at all. (B) Distribution of 

biomass focusing on different animal taxa using pie-charts. As observed in the comparison between 

panels A and C, due to the lower dynamic range of the chart relative to the Voronoi diagram 

presented in D, the biomass of, for example, wild mammals, is very difficult to discern and that of 

birds is not visible. Values are based on the estimates presented in Table 1. Only the labels of taxa 

which are not visible due to the lower dynamic range of the pie-chart are presented in A and B. 

Colors of each slice correspond to the same taxon as in the Voronoi diagrams. 
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Fig. S5. The impact of human civilization on the biomass of mammals.   
The biomass of wild mammals, livestock (dominated by cattle) and humans before human 

civilization and at present. Values are based on estimates presented in detail in the relevant sections 

for humans and livestock, wild mammals and pre-human biomass. 
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Table S1. Summary of estimated total biomass and abundance of various abundant 

taxonomic groups.  

Values are based on a literature survey as detailed in the SI Appendix. Reported values 

have been rounded to the closest order of magnitude in log scale thus reflecting the 

associated level of uncertainty.  

 

Taxon Mass [Gt C = 1015 g C] Abundance 

Plants Trees      450 1013 

Bacteria    Terrestrial deep subsurface      60   1030 

   Marine deep subsurface        7   1029 

   Soil        7   1029 

   Marine        1.3   1029 

Total         70 1030 

Fungi         12 1027 

Archaea    Terrestrial deep subsurface        4   1029 

   Marine deep subsurface        3   1029 

   Soil        0.5   1028 

   Marine        0.3   1028 

Total           7 1029 

Protists             4 1027 

  

Animals 

    Chordates Fish        0.7 

        2 

1015 

Livestock        0.1 1010 

Humans        0.06 1010 

Wild mammals        0.007   

Wild birds        0.002 1011 

   Arthropods Terrestrial        0.2  1018 

Marine        1 1020 

  Annelids        0.2 1018 

   Molluscs        0.2 1018 

   Cnidarians        0.1 1016 

   Nematodes        0.02 1021 

Total   1021 

Viruses             0.2 1031 
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Table S2. Methodology used to estimate the global biomass of plants. 

The table summarizes the methods for estimating the biomass of plants. More details are provided in the “Plants – Biomass” section in the SI Appendix. 

 

Biomass estimate 

Main methods & 

resources 

Measured quantity Conversion to biomass Extrapolation method 

Estimate by Erb et 

al. (9) 

Based on 

integration by Erb 

et al. of both 

inventory-based 

data and remote 

sensing-based data 

Inventory based data: 

Forest area [km2] and biomass density [g C m-2] 

Method: data collection in each country worldwide 

by FRA or based on Pan et al. (1) 

Direct biomass measurement Multiplication of forest 

area with characteristic 

biomass densities for each 

country, done by the FRA 

or by Pan et al. (1) 

Remote sensing data: 

Tree height [m] or Growing stock volume [m3 m-2] 

Method: Lidar 

Conversion made by each study by 

allometric relations between 

measured quantity and biomass  

Remote sensing measures 

locally in each location 

covered. Erb et al. 

integrated together 

different studies covering 

the entire land surface.  

Uncertainty 

Variation between different sources which Erb et al. (9) uses for their estimate (link to full calculation) 

Estimate of number of individuals 

We use the estimate of the total number of trees by Crowther et al. (294). We do not give an estimate for the total number of non-tree plants. 

  

https://milo-lab.github.io/biomass_distribution/plants/plants.html#Uncertainty-analysis
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Table S3. Methodology used to estimate the global biomass of marine prokaryotes. 

The table summarizes the methods for estimating the biomass of marine bacteria and archaea. More details are provided in the “Bacteria and archaea – 

marine” section in the SI Appendix. The final estimate is a geometric mean of the estimates from Arístegui et al., Buitenhuis et al. and Lloyd et al. 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Arístegui et al. (26) Cell concentration [# cells mL-1] 

Method: various (meta-analysis), 

detailed in (26) 

Cell carbon content [g C cell-1]: 

11 fg C, an average of several 

studies (link to full calculation) 

Arístegui et al. calculated average cell concentration for 

each for depth zones: epipelagic (<200m) mesopelagic 

(200-1000m) and bathypelagic (1000-4000m). For each 

zone, Arístegui et al. integrated the biomass density per 

unit volume over the entire depth of each zone. We 

calculated the total biomass for each zone by multiplying 

the above biomass densities by the total surface area of the 

ocean and summing across all depth zones (link to full 

calculation) 

Buitenhuis et al. (27) Cell concentration [# cells mL-1] 

Method: Flow-cytometry and 

microscopic counting 

We binned the data along 100 m depth bins. We calculated 

the mean concentration of cells at each bin and multiplied 

the mean cell concentration by the total volume of water at 

each depth bin 

Lloyd et al. (28) Cell concentration [# cells mL-1] 

Method: FISH 

Lloyd et al. fit an equation predicting cell concentration 

based on depth. We used the equation to estimate the mean 

concentration of cells at each depth. We multiplied the 

mean concentration by the total volume of water at each 

depth 

Uncertainty 

Cell concentration – intra-study and inter-study uncertainty among studies (link to full calculation) 

 

Carbon content – intra-study and inter-study uncertainty among several studies (link to full calculation) 

Estimate of number of individuals 

Total number of cells already attained in the process of estimating total biomass 

  

https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/carbon_content/marine_prok_carbon_content.html#Estimating-the-carbon-content-of-marine-bacteria-and-archaea
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Estimating-the-total-number-of-marine-bacteria-and-archaea
https://paperpile.com/c/C72ZXm/oG8l
https://paperpile.com/c/C72ZXm/4wls
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/cell_num/marine_prokaryote_cell_number.html#Interstudy-uncertainties
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine/carbon_content/marine_prok_carbon_content.html#Uncertainty-analysis
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Table S4. Methodology for estimating the global biomass of soil prokaryotes. 

The table summarizes the methods for estimating the biomass of bacteria and archaea in the soil. More details are provided in the “Bacteria and archaea 

– soil” section in the SI Appendix. The final estimate is a geometric mean of the estimates from Xu et al. and Serna-Chavez et al. 

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Serna-Chavez et al. 

(111) 

Microbial carbon biomass 

density [g C m-2] 

Method: mainly fumigation 

extraction 

Fraction of prokaryotes out of 

microbial biomass: ≈0.5 based on 

Joergensen & Wichern (114) 

Multivariate model by Serna-Chavez et al. 

(111) predicting biomass density based on 

mean annual precipitation and 

temperature, highest annual maximum 

monthly temperature and soil pH 

Xu et al. (110) Multivariate model by Xu et al. (110) 

predicting biomass density based on mean 

annual precipitation and temperature, and 

soil organic carbon 

Uncertainty 

Microbial biomass – intra-study and inter-study uncertainty across Xu et al. (110) and Serna-Chavez et al. (111; link to full calculation) 

Fraction of prokaryotes out of microbial biomass – intra-study, inter-study, inter-habitat (arable, grassland and forest), and inter-method 

(direct microscopic counts, measurements of specific cell wall components which are characteristic to either fungi or bacteria) uncertainty 

between all studies reported in Joergensen & Wichern (114; link to full calculation) 

Estimate of number of individuals 

Dividing the total biomass of soil prokaryotes by a characteristic cell carbon mass of ≈30 fg C based on Bakken (298) 

  

https://paperpile.com/c/C72ZXm/zb8j
https://paperpile.com/c/C72ZXm/QM3Q
https://paperpile.com/c/C72ZXm/zb8j
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/zb8j
https://milo-lab.github.io/biomass_distribution/fungi/soil_microbial_biomass/soil_microbial_biomass.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/QM3Q
https://milo-lab.github.io/biomass_distribution/fungi/fungi_fraction/fungi_fraction.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/JEBq
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Table S5. Methodology for estimating the global biomass of prokaryotes in the marine deep subsurface. 

The table summarizes the methods for estimating the biomass of bacteria and archaea in the marine deep subsurface. More details are provided in the 

“Bacteria and archaea – marine deep subsurface” section in the SI Appendix. The final estimate is a geometric mean of the estimates from Kallmeyer et 

al. and Parkes et al. 

 

Biomass 

Main Resources Measured quantity Conversion to biomass Extrapolation method 

Kallmeyer et al. (75) Cell concentration  

[# cells mL-1] 

Method: direct counts 

after DNA staining 

Cell carbon content [g 

C cell-1]: ≈24 fg C, an 

average of several 

studies (link to full 

calculation)  

Multivariate model Kallmeyer et al. (75) predicting cell 

concentration at each depth based on sedimentation rate and 

distance from shore. For each depth, Kallmeyer et al. (75) 

multiplied cell concentration by the total volume at each 

depth 

Parkes et al. (76) Parkes et al. (76) used regression of cell concentrations to 

depth to estimate the concentration of cells at each depth, 

multiplied cell concentration by the total volume at each 

depth 

Uncertainty 

Number of cells – intra-study and inter-study uncertainty between Kallmeyer et al. and Parkes et al. 

 

Carbon content – intra-study, inter-study and inter-method (volume-based and amino acid-based carbon content estimate) uncertainty across 

all the studies used to estimate carbon content (link to full calculation) 

Estimate of number of individuals 

Total number of cells already attained in the process of estimating total biomass 

 

 

  

https://paperpile.com/c/C72ZXm/cd7Q
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/carbon_content/marine_deep_subsurface_prok_carbon_content.html#Estimating-the-carbon-content-of-marine-bacteria-and-archaea
https://paperpile.com/c/C72ZXm/cd7Q
https://paperpile.com/c/C72ZXm/cd7Q
https://paperpile.com/c/C72ZXm/fYyx
https://paperpile.com/c/C72ZXm/fYyx
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/marine_deep_subsurface/carbon_content/marine_deep_subsurface_prok_carbon_content.html#Uncertainty-analysis
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Table S6. Methodology for estimating the global biomass of prokaryotes in the terrestrial deep subsurface. 

Biomass 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

McMahon & Parnell 

(98) 

Cell concentration [# 

cells mL-1] from 

groundwater 

 

Method: direct counts 

after DNA staining 

Cell carbon content [g C cell-1]: 

≈26 fg C from McMahon & 

Parnell (98) 

We use the measurements reported in McMahon 

& Parnell (98), bin the data to 250 m depth bins, 

calculate mean cell concentration in each depth 

bin. We multiply mean cell concentration in each 

depth by the total volume of aquifer at that depth. 

Aquifer volume at each depth was estimated by 

from the data in Gleeson et al. (99) on the total 

volume of aquifers and porosity profiles 

Ratio between number of cells 

attached to sediment and 

planktonic cells in groundwater: 

102-103 from McMahon & Parnell 

(98) 

Uncertainty 

Average concentration of cells in groundwater – Based on variance of measurements within each depth bin and difference between the 

average concentration at each bin based on the geometric mean and the arithmetic mean (link to full calculation) 

Aquifer volume – intra-study uncertainty in Gleeson et al. (99) 

Carbon content – based on our projection of the uncertainty of the carbon content of bacteria and archaea in subseafloor sediments (see 

marine deep subsurface bacteria and archaea section) 

Attached/Unattached ratio – we use the 95% confidence interval around the geometric mean of the upper and lower bound, 102 and 103, as 

our uncertainty range for the ratio of attached to unattached cells.  

Estimate of number of individuals 

Total number of cells attained in the process of estimating total biomass 

 

  

https://paperpile.com/c/C72ZXm/JpxK
https://paperpile.com/c/C72ZXm/JpxK
https://paperpile.com/c/C72ZXm/JpxK
https://paperpile.com/c/C72ZXm/THh4
https://paperpile.com/c/C72ZXm/JpxK
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/terrestrial_deep_subsurface/prok_biomass/terrestrial_deep_subsurface_prok_biomass.html#Average-cell-concentration
https://paperpile.com/c/C72ZXm/THh4
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Table S7. Methodology for estimating the fraction of archaea out of the total biomass of prokaryotes. 

The table summarizes the methods for estimating the fraction of archaea out of the total biomass of prokaryotes in each environment. For details, see the 

relevant section in the supporting materials. Our best estimate is based on a geometric mean of values from independent methods for each environment 

(Usually FISH and 16S rDNA sequencing). 

 

Environment Main Resource Method Comments 

Marine Lloyd et al. (28) FISH with specific 16S rDNA probes We calculated characteristic fraction of archaea in each 

ocean layer (epipelagic, mesopelagic and bathypelagic) 

Sunagawa et al. (54) 

Salazar et al. (55) 

16S rDNA sequencing We calculated characteristic fraction of archaea in each 

ocean layer (epipelagic, mesopelagic and bathypelagic) 

We corrected for the lower copy number of rDNA genes 

in archaea (56) 

Soil Bates et al. (58) 16S rDNA sequencing From 146 soils across the globe. We corrected for the 

lower copy number of rDNA genes in archaea (56) 

Integration of several studies 

(link to full calculation) 

FISH with specific 16S rDNA probes We calculated average values across studies and across 

habitats 

Hong & Cho (59) 16S rDNA qPCR From grasslands, forests and cropland in Korea 

Integration of several studies 

(link to full calculation) 

CARD-FISH with specific 16S 

rDNA probes 

We calculated average values across studies and across 

habitats 

Marine deep 

subsurface 
Lloyd et al. (28) CARD-FISH with specific 16S 

rDNA probes 
We calculated the average over all samples taken in 

layers deeper than 10 cm 

Terrestrial deep 

subsurface 
Several studies (101–104) 

(link to full calculation) 

16S rDNA sequencing We corrected for the lower copy number of rDNA genes 

in archaea (56) 

We calculated average values across studies 

Several studies (105–107) 

(link to full calculation) 

16S rDNA qPCR We calculated average values across studies 

Moser et al. (108) FISH with specific 16S rDNA probes  

Lloyd et al. (28) CARD-FISH with specific 16S 

rDNA probes 

We used our best estimate for the fraction of archaea in 

the marine deep subsurface as an additional source for 

estimating the fraction of archaea in the terrestrial deep 

subsurface 

https://paperpile.com/c/C72ZXm/4wls
https://paperpile.com/c/C72ZXm/c6Db
https://paperpile.com/c/C72ZXm/JwUq
https://paperpile.com/c/C72ZXm/R3TZ
https://paperpile.com/c/C72ZXm/zY0w
https://paperpile.com/c/C72ZXm/R3TZ
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#FISH-based-estimate
https://paperpile.com/c/C72ZXm/v7Eh
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/soil/soil_arch_bac_ratio.html#Estimating-the-fraction-of-archaea-out-of-the-total-soil-prokaryote-population
https://paperpile.com/c/C72ZXm/4wls
https://paperpile.com/c/C72ZXm/NBRp+gnda+pfqg+uxNB
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/terrestrial_deep_subsurface/arch_bac_ratio/terrestrial_deep_subsurface_arch_frac.html#16S-rDNA-sequencing-based-estimate
https://paperpile.com/c/C72ZXm/R3TZ
https://paperpile.com/c/C72ZXm/vcRT+NRoM+mP3v
https://milo-lab.github.io/biomass_distribution/bacteria_archaea/terrestrial_deep_subsurface/arch_bac_ratio/terrestrial_deep_subsurface_arch_frac.html#qPCR-based-estimate
https://paperpile.com/c/C72ZXm/vr4G
https://paperpile.com/c/C72ZXm/4wls
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Table S8. Methodology for estimating the global biomass of fungi. 

The table summarizes the methods for estimating the biomass of fungi. More details are provided in the “Fungi” section in the supporting materials.  

The final estimate is a geometric mean of the estimates from Xu et al. and Serna-Chavez et al. 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Serna-Chavez et al. 

(111) 

Microbial carbon biomass 

density [g C m-2] 

Method: mainly fumigation 

extraction 

Fraction of prokaryotes out of 

microbial biomass: ≈0.5 based on 

Joergensen & Wichern (114) 

Multivariate model by Serna-Chavez et al. 

(111) predicting biomass density based on 

mean annual precipitation and 

temperature, highest annual maximum 

monthly temperature and soil pH 

Xu et al. (110) Multivariate model by Xu et al. (110) 

predicting biomass density based on mean 

annual precipitation and temperature, and 

soil organic carbon 

Uncertainty 

Microbial biomass – intra-study and inter-study uncertainty across Xu et al. (110) and Serna-Chavez et al. (111; link to full calculation) 

Fraction of prokaryotes out of microbial biomass – intra-study, inter-study, inter-habitat (arable, grassland and forest), and inter-method 

(direct microscopic counts, measurements of specific cell wall components which are characteristic to either fungi or bacteria) uncertainty 

between all studies reported in Joergensen & Wichern (114; link to full calculation) 

Estimate of number of individuals 

Dividing the total biomass of soil prokaryotes by a characteristic cell carbon mass of ≈15 pg C based on a rough estimate of a cell volume of 

≈100 µm3 (299) and using a carbon density of ≈150 fg C µm-3 

 

 

  

https://paperpile.com/c/C72ZXm/zb8j
https://paperpile.com/c/C72ZXm/QM3Q
https://paperpile.com/c/C72ZXm/zb8j
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/lyo2
https://paperpile.com/c/C72ZXm/zb8j
https://milo-lab.github.io/biomass_distribution/fungi/soil_microbial_biomass/soil_microbial_biomass.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/QM3Q
https://milo-lab.github.io/biomass_distribution/fungi/fungi_fraction/fungi_fraction.html#Uncertainty-analysis
https://paperpile.com/c/C72ZXm/zHpy
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Table S9. Methodology for estimating the global biomass of humans. 

The table summarizes the methods for estimating the biomass of Humans. More details are provided in the “Humans and livestock” section in the 

supporting materials.  

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass 

UN World Population Prospects, 

2015 revision 

Total number of humans 

 

Characteristic carbon content per person: 7500 g C based on Hern 

(172) assuming 70% water content and 50% carbon content of dry 

weight (age weighted average body weight is ≈50 kg) 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

 

 

  

https://paperpile.com/c/C72ZXm/dZmc
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Table S10. Methodology for estimating the global biomass of livestock. 

The table summarizes the methods for estimating the biomass of livestock. More details are provided in the “Humans and livestock” section in the 

supporting materials.  

 

Biomass estimate 

Main Resource Measured 

quantity 

Conversion to biomass Extrapolation method 

FAOStat database  

(domain: Production/Live 

animals) 

Total number of 

livestock  

Characteristic weight of each livestock species in 

each continent based on IPCC (171). We convert 

weight to carbon assuming 70% water content and 

50% carbon mass out of dry weight 

We sum of total number of 

individuals in each country, and 

multiply it by the characteristic 

carbon content of each species of 

livestock 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

 

 

  

https://paperpile.com/c/C72ZXm/2Uur
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Table S11. Methodology for estimating the global biomass of wild mammals. 

The table summarizes the methods for estimating the biomass of wild mammals. More details are provided in the “Humans and livestock” section in the 

supporting materials. Our best estimate for the biomass of wild mammals is the sum of our estimates for terrestrial and marine wild mammals. 

 

Biomass estimate 

Main Resources Measured quantity Conversion to biomass Extrapolation method 

Wild land 

mammals 

(geometric mean 

of the thee 

approaches) 

Smil (173) Characteristic dry mass 

densities per biome [kg ha-1] 

from the HYDE database (174) 

Assuming 70% water 

content and 50% 

carbon content out of 

dry weight 

 

Interpolation of characteristic mass 

densities across the area of each biome, 

done by Smil (173) 

Novosolov et al. 

(176), IUCN data 

Mass of individual [g] and 

range [m2] for each species 

Log-log correlations between the total 

number of individuals, the mass of an 

individual, and the study area in which 

the total number of individuals were 

measured were established. Based on 

these correlations, the total number of 

individuals was extrapolated based on 

range size data and body mass data. The 

extrapolated total number of individuals 

was multiplied by the mass of an 

individual to generate the estimate of 

total biomass. 

Barnosky (175) Number density of animals and 

ranges, done by Barnosky 

(175) 

Based on relation between animal mass 

and its population density, done by 

Barnosky (175) 

Marine mammals Christensen (178) Estimates from Christensen (178) of the total number of individuals combined with estimates of the 

characteristic weights of individuals in Christensen (178). We compared the estimates against data 

from the IUCN (link to full calculation) 

  

https://paperpile.com/c/C72ZXm/WEZK
https://paperpile.com/c/C72ZXm/NVbw
https://paperpile.com/c/C72ZXm/WEZK
https://paperpile.com/c/C72ZXm/7I9R
http://www.iucnredlist.org/technical-documents/spatial-data#mammals
https://paperpile.com/c/C72ZXm/fiwZ
https://paperpile.com/c/C72ZXm/fiwZ
https://paperpile.com/c/C72ZXm/fiwZ
https://paperpile.com/c/C72ZXm/63ys
https://paperpile.com/c/C72ZXm/63ys
https://paperpile.com/c/C72ZXm/63ys
https://milo-lab.github.io/biomass_distribution/animals/chordates/wild_mammals/wild_mammal.html#Estimating-the-biomass-of-wild-marine-mammals
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Table S12. Methodology for estimating the global biomass of wild birds. 

The table summarizes the methods for estimating the biomass of birds. More details are provided in the “Birds” section in the supporting materials. Our 

best estimate for the biomass of birds is the geometric mean of the estimates using methods 1 & 2.  

 

Biomass estimate 

Main methods & resource Measured quantity Conversion to biomass Extrapolation method 

Method 1 Gaston & Blackburn 

(180) 

Density of number of birds 

[# individuals m-2] 

 

Methods: several, detailed 

in Gaston & Blackburn 

(180) 

We calculated a 

characteristic carbon content 

of individual bird based on 

Nee et al. (181). We used 

this carbon content to 

convert the total number of 

birds to total biomass 

Gaston & Blackburn extrapolated the 

density of birds per unit area to the total 

surface area of ice-free land. 

Method 2 Novosolov et al. (176) Mass of individual [g] 

(177) and range [m2] for 

each species (176) 

Assuming 70% water 

content and 50% carbon 

content out of dry weight 

 

Log-log correlations between the total 

number of individuals, the mass of an 

individual, and the study area in which the 

total number of individuals were 

measured were established. Based on 

these correlations, the total number of 

individuals was extrapolated based on 

range size data and body mass data. The 

extrapolated total number of individuals 

was multiplied by the mass of an 

individual to generate the estimate of total 

biomass. 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

 

https://paperpile.com/c/C72ZXm/MUMz
https://paperpile.com/c/C72ZXm/MUMz
https://paperpile.com/c/C72ZXm/PKFw
https://paperpile.com/c/C72ZXm/7I9R
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Table S13. Methodology for estimating the global biomass of marine arthropods. 

The table summarizes the methods for estimating the biomass of marine arthropods. More details are provided in the “Marine 

arthropods” section in the supporting materials. Our best estimate for the biomass of marine arthropods is the sum of the biomass of 

arthropods in the mesozooplakton and macrozooplankton. For mesoplankton and microzooplankton, our estimates based on the 

geometric mean between estimates are based on the average and median biomass densities. 

 

Biomass estimate 

Main Resources Measured quantity Conversion to biomass Extrapolation method 

mesozooplankton 

 

Buitenhuis et al. 

(206) - assuming 

crustaceans 

dominate 

mesozooplankton 

Direct biomass density or number 

of individuals density [g C mL-1]/ 

[# of individuals mL-1] 

 

Method: various (meta-analysis) 

If biomass not measured 

directly, Buitenhuis et al. used 

length of individuals and 

allometric equations between 

length and biomass 

Buitenhuis et al. calculated 

average/median concentration per depth 

integral and multiplied it by the total 

volume of each depth layer 

macrozooplankton Moriarty et al. 

(304) 

Direct biomass density or number 

of individual density [g C mL-1]/ [# 

of individuals mL-1] 

 

Method: various (meta-analysis) 

If biomass not measured 

directly, Moriarty et al. used 

length of individuals and 

allometric equations between 

length and biomass 

Moriarty et al. calculated average/median 

concentration per depth integral and 

multiplied it by the total volume of each 

depth layer. We subtract the contribution 

from other dominant macrozooplankton 

taxa such as cnidarians, molluscs etc. 

Uncertainty 

As our estimate relies on the MAREDAT database, we use our projection for the uncertainty of the database, which is based on a dedicated section above 

titled “Sanity checks on the MAREDAT dataset 

Estimate of number of individuals 

Based on dividing the total biomass of each size category (mesozooplankton/macrozooplankton) by the characteristic carbon content of each class. The 

carbon content is calculated by taking the geometric mean of the values from the literature (382, 303) 

https://paperpile.com/c/C72ZXm/qLsf
https://paperpile.com/c/C72ZXm/FfBu
https://paperpile.com/c/C72ZXm/H6Kp+6pbI
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Table S14. Methodology for estimating the global biomass of terrestrial arthropods. 

The table summarizes the methods for estimating the biomass of terrestrial arthropods. More details are provided in the “Terrestrial 

arthropods” section in the supporting materials. Our best estimate for the biomass of terrestrial arthropods is the geometric mean of the 

two methods. 

 

Biomass estimate 

Main Methods & Resources Measured quantity Conversion to biomass Extrapolation method 

Method 1 Various sources 

(link to full 

calculation) 

Density of number of 

individuals [# individuals m-2] 

Method: direct counts and 

length measurements 

Length of individuals and allometric 

equations between length and biomass 

Assuming the biomass 

density is applicable 

world-wide. We 

multiply the average 

biomass density by the 

total non-ice surface of 

the world 

 

Methods 2 Williams (195) Density of number of 

individuals [# individuals m-2] 

Method: direct counts, 

measured in southeast 

England  

Characteristic mass calculated from 

method 1 by dividing the total 

biomass in each site by the total 

number of individuals reported 

Uncertainty 

Average insect biomass – intra-study and inter-study uncertainty between different studies 

Total number of individuals - the uncertainty reported in the paper by Williams (195) for the range of total number of insects 

Estimate of number of individuals 

We use the total number of individuals estimated by Williams (195) 

  

https://milo-lab.github.io/biomass_distribution/animals/arthropods/terrestrial_arthropods/terrestrial_arthropods.html#Average-biomass-densities-method
https://paperpile.com/c/C72ZXm/CSjl
https://paperpile.com/c/C72ZXm/CSjl
https://paperpile.com/c/C72ZXm/CSjl
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Table S15. Methodology for estimating the global biomass of fish. 

The table summarizes the methods for estimating the biomass of fish. More details are provided in the “Fish” section in the supporting 

materials. Our best estimate for the biomass of fish integrates our estimate for mesopelagic fish and non-mesopelagic fish. 

 

Biomass estimate 

Main Methods & Resources Measured quantity Conversion to biomass Extrapolation method 

Mesopelagic 

fish 

(geometric 

mean of both 

methods) 

Acoustics based 

(geometric mean 

of both studies) 

Irigoien et al. (164) area backscattering coefficient [m2 

m-2] 

Method: Simrad EK60 echosounder 

operating at 38 kHz 

We use target strength per 

biomass measurements 

from Irigoien et al. for fish 

with and without 

swimbladder and assume 

≈50% of the population 

has swimbladder 

Irigoien et al. used correlation between 

the scattering coefficient and primary 

productivity 

Proud et al. (165) Proud et al. calculated mean backscatter 

for ocean areas clustered based on 

primary productivity, and multiplied the 

mean backscatter by the area of each 

ocean area 

Trawling based Lam & Pauly (163) Wet weight [g m-2] density  

 

Method: trawling 

Assuming water content of 

≈70% and carbon content 

of ≈50% of dry weight 

Lam & Pauly multiply average densities 

with the surface areas for different strata 

of the world ocean 

non-mesopelagic fish Wilson et al. (161) Ecological modelling by Wilson et al. based on various parameters such as primary productivity, transfer 

efficiencies etc. 

Uncertainty 

Mesopelagic fish Total scattering – intra-study and inter-study uncertainty between Irigoien et al. and Proud et al.  

Target strength per biomass - the main parameter affecting the target strength is the presence of absence of a swimbladder. Testing 

the sensitivity of the estimate to different population compositions of fish containing or lacking swimbladder. 

The total fraction of mesopelagic scattering layer that is fish - assumed to be high based on Kloser et al. and Godø et al. (168, 169) 

Other sources of uncertainty - the influence of the size spectra of fish on the target strength of a single fish, possible effects of 

resonance 

Non-mesopelagic fish Intra-study uncertainty reported in a similar ecological model by Jennings et al. (170) 

Estimate of number of individuals 

Dividing the total biomass of mesopelagic fish by a characteristic carbon content of a single fish of ≈0.5 g C, based on Fock & Ehrich (301) 

https://paperpile.com/c/C72ZXm/5hL8
https://paperpile.com/c/C72ZXm/yWy4
https://paperpile.com/c/C72ZXm/WIgW
https://paperpile.com/c/C72ZXm/UqnW
https://paperpile.com/c/C72ZXm/CDs2J+rLxfu
https://paperpile.com/c/C72ZXm/wcnh
https://paperpile.com/c/C72ZXm/RLxxC
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Table S16. Methodology for estimating the global biomass of annelids. 

The table summarizes the methods for estimating the biomass of annelids. More details are provided in the “Annelids” section in the supporting materials. 

Our estimate is based on the geometric mean between estimates based on the average and median biomass densities. 

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Fierer et al. (144) Abundance density  

[# on individuals m-2] 

Method: direct counts 

Characteristic carbon content of 

earthworms: 5 mg C based on 

Petersen & Luxton (146) 

We multiplied average densities per biome from Fierer 

et al. (144) by area of each biome 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

 

 

  

https://paperpile.com/c/C72ZXm/kDsi
https://paperpile.com/c/C72ZXm/bivK
https://paperpile.com/c/C72ZXm/kDsi
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Table S17. Methodology for estimating the global biomass of molluscs. 

The table summarizes the methods for estimating the biomass of molluscs. More details are provided in the “Molluscs” section in the 

supporting materials. Our best estimate for the biomass of molluscs is the sum of the estimates for pteropods and squids. For 

pteropods, our estimates are based on the geometric mean between estimates based on the average and median biomass densities. 

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Pteropods Bednaršek et al. 

(300) 

Either biomass density or 

individual abundance 

density [g C m-3]/[# 

individuals m-3] 

 

Methods: various (meta-

analysis) 

In case biomass was not 

directly measured, length of 

the organism was used to 

convert to biomass using 

allometric equations, as 

detailed in Bednaršek et al. 

(300) 

Bednaršek et al calculated 

average/median concentration per 

depth integral and extrapolating 

based on the total volume of each 

depth layer 

Squids Rodhouse & Nigmatullin (219) 

Estimate of number of individuals 

We rely on estimates of the average abundance and biomass densities of pteropods (300). We divide the two to get a characteristic 

biomass per individual. We then divide the total biomass of pteropods by the characteristic biomass of an individual. Pteropods are small 

compared to squids, so they will dominate the abundance of molluscs.  

https://paperpile.com/c/C72ZXm/iHuQ
https://paperpile.com/c/C72ZXm/iHuQ
https://paperpile.com/c/C72ZXm/3VSG
https://paperpile.com/c/C72ZXm/iHuQ
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Table S18. Methodology for estimating the global biomass of cnidarians. 

The table summarizes the methods for estimating the biomass of cnidarians. More details are provided in the “Cnidarians” section in 

the supporting materials. Our best estimate for the biomass of cnidarians is the sum of the estimates for cnidarians in plankton and for 

corals. 
 

Biomass estimate 

Main methods & resource Measured quantity Conversion to biomass Extrapolation method 

Gelatinous 

plankton  

Lucas et al. 

(211) 

Abundance data for each taxon [# 

individuals m-3] 

 

Method: various (meta-analysis), 

detailed in Lucas et al. (211) 

Lucas et al. used characteristic length 

measurements for each taxon and 

allometric equations from length to 

biomass from various sources listed in 

(211) 

Lucas et al. applied mean concentration of 

cnidaria across the top 200 meters of the ocean 

Corals 

 

(Geometric 

mean of 

method 1 & 

2) 

Method 1 Tissue volume density [mL m-2] 

 

Method: vaseline method based 

on Odum & Odum (215) 

Assuming carbon density similar to 

that of sea anemones based on Odum 

& Odum (215) 

We assume coral tissue surface area is ≈5 times 

the projected area based on Holmes & Glen (214)  

We assume corals occupy ≈20% of coral reef 

area based on De’ath et al. (213) 

We multiply biomass density by the area of coral 

reefs based on Harris et al. (212) - accounting for 

coral cover and tissue surface area  

Method 2 Local carbonate production [kg 

carbonate m-2 year-1] 

 

Methods: various based on 

McNiel (217) and Kuffner et al. 

(218) 

Carbonate production per unit surface 

area of coral [kg carbonate year-1 m-2] 

Based on McNiel (217) and Kuffner et 

al. (218)  

Applying local production per area to the total 

area of coral reefs based on Vecsei (216) 

Carbon content per unit surface area 

from method 1 

Estimate of number of individuals 

Dividing total biomass estimate for gelatinous plankton by a characteristic carbon content per individual based on Lucas et al. (211) 

https://paperpile.com/c/C72ZXm/eZPS
https://paperpile.com/c/C72ZXm/eZPS
https://paperpile.com/c/C72ZXm/eZPS
https://paperpile.com/c/C72ZXm/jpE4
https://paperpile.com/c/C72ZXm/jpE4
https://paperpile.com/c/C72ZXm/TCN4
https://paperpile.com/c/C72ZXm/GEpm
https://paperpile.com/c/C72ZXm/Aav9
https://paperpile.com/c/uWwtjC/fHXVU
https://paperpile.com/c/uWwtjC/aTdbn
https://paperpile.com/c/C72ZXm/A0ie+38Z1
https://paperpile.com/c/C72ZXm/A0ie+38Z1
https://paperpile.com/c/C72ZXm/Fwzm
https://paperpile.com/c/C72ZXm/eZPS
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Table S19. Methodology for estimating the global biomass of nematodes. 

The table summarizes the methods for estimating the biomass of nematodes. More details are provided in the “Nematodes” section in the supporting 

materials. Our estimate is based on the geometric mean between estimates based on the average and median biomass densities. 

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Fierer et al. (144) Abundance density  

[# on individuals m-2] 

Method: direct counts 

Characteristic carbon content of 

nematode: ≈0.05 µg C based on 

Petersen & Luxton (146) 

We multiplied average densities per biome from 

Fierer et al. (144) by area of each biome 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

 

  

https://paperpile.com/c/C72ZXm/kDsi
https://paperpile.com/c/C72ZXm/bivK
https://paperpile.com/c/C72ZXm/kDsi
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Table S20. Methodology for estimating the global biomass of marine protists. 

The table summarizes the methods for estimating the biomass of marine protists. More details are provided in the “Marine protists” 

section in the supporting materials. Our best estimate for the biomass of marine protists is the sum of the estimates for each size 

fraction. For picophytoplankton, and microzooplankton, diatoms, Phaeocystis and macrozooplankton, our estimates are based on the 

geometric mean between estimates based on the average and median biomass densities. 

Biomass estimate 

Main size fractions & resource Measured quantity Conversion to biomass Extrapolation method 

Picophytoplankton Buitenhuis et al. 

(206, 220) 

Density of number of 

cells [# cells m-3] 

Method: various 

(meta-analysis), 

detailed in (206) 

Buitenhuis et al. used characteristic carbon content for an 

individual cell from various sources listed in (206, 220) 

Buitenhuis et al. calculated 

average/median concentration per 

depth integral and multiplied it by 

the total volume of each depth layer 

Heterotrophic Pico-

nanoplankton 

de Vargas et al. 

(130) 

Fraction of pico-

nanoplankton which 

are autotrophic 

Method: 18S 

metabarcoding 

We take our estimate for picophytoplankton and divide it 

by the the ratio of autotrophic to heterotrophic pico-

nanoplankton 

 

microzooplankton Buitenhuis et al. 

(206) 

Direct biomass 

density or number of 

individual density [g 

C mL-1]/ [# of 

individuals mL-1] 

Method: various 

(meta-analysis), 

detailed in (206) 

If biomass not measured directly, Buitenhuis et al. used 

length of individuals and allometric equations between 

length and biomass 

Buitenhuis et al. calculated 

average/median concentration per 

depth integral and multiplied it by 

the total volume of each depth layer  

Diatoms Leblanc et al. 

(221) 

Density of number of 

cells [# cells m-3] 

Method: various 

(meta-analysis), 

detailed in (221) 

Leblanc et al. used characteristic carbon content for an 

individual cell from various sources listed in (221) 

Leblanc et al. calculated 

average/median concentration per 

depth integral and multiplied it by 

the total volume of each depth layer 

https://paperpile.com/c/C72ZXm/Gw09+sez0
https://paperpile.com/c/C72ZXm/sez0
https://paperpile.com/c/C72ZXm/Gw09+sez0
https://paperpile.com/c/C72ZXm/3uvj
https://paperpile.com/c/C72ZXm/sez0
https://paperpile.com/c/C72ZXm/sez0
https://paperpile.com/c/C72ZXm/YLqg
https://paperpile.com/c/C72ZXm/YLqg
https://paperpile.com/c/C72ZXm/YLqg
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Phaeocystis Vogt et al. (307) Density of number of 

cells [# cells m-3] 

Method: various, 

mostly microscopy 

Vogt et al. used characteristic carbon content for an 

individual cell from various sources listed in (307) 

Vogt et al. calculated 

average/median concentration per 

depth integral and multiplied it by 

the total volume of each depth layer 

Macrozooplankton Biard et al. (208) Biovolume density 

[m-3 m-3] 

 

Method: in situ 

imaging 

Biard et al. used characteristic carbon content for an 

individual cell from various sources listed in Biard et al. 

(208) 

Biard et al. calculated 

average/median concentration per 

depth integral and multiplied it by 

the total volume of each depth layer 

Uncertainty 

As our estimate relies on the MAREDAT database, we use our projection for the uncertainty of the database, which is based on a dedicated section above titled “Sanity 

checks on the MAREDAT dataset 

Estimate of number of individuals 

Divide total biomass of each size category by the characteristic carbon content of each class. The carbon content is calculated by taking the geometric mean of the volume 

of each size category, and using a conversion equation between biovolume and carbon content from Pernice et al. (132) 

 

 

https://paperpile.com/c/C72ZXm/bqGA
https://paperpile.com/c/C72ZXm/bqGA
https://paperpile.com/c/C72ZXm/GAsA
https://paperpile.com/c/C72ZXm/GAsA
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Table S21. Methodology for estimating the global biomass of terrestrial protists. 

The table summarizes the methods for estimating the biomass of terrestrial protists. More details are provided in the “Terrestrial 

protists” section in the supporting materials. 

 

Biomass estimate 

Main Resource Measured quantity Conversion to biomass Extrapolation method 

Integration of 

several studies 

(link to full 

calculation) 

Density of number of individuals 

[# individuals m-3] 

 

Method: direct microscopical 

counts 

We use an average carbon content for each 

morphological type (flagellates, ciliates, and 

naked and testate amoebae) from values 

reported in several studies (link to full 

calculation) 

We calculate mean individual 

density for each biome, multiply the 

mean density by the total area of 

each biome and sum across all 

biomes. 

Uncertainty 

Number of individuals – intra-study and inter-study uncertainty between the different studies. Inter-habitat uncertainty between mean density 

of individuals in different habitats (link to full calculation) 

Carbon content – intra-study and inter-study uncertainty between different studies amoebae (link to full calculation) 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-protists
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Carbon-content-of-protists
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Number-of-individuals
https://milo-lab.github.io/biomass_distribution/protists/terrestrial_protists/terrestrial_protists.html#Carbon-content


111 

Table S22. Methodology for estimating the global biomass of viruses. 

The table summarizes the methods for estimating the biomass of viruses. More details are 

provided in the “Viruses” section in the supporting materials. Our best estimate for the 

biomass of viruses integrates our estimate for the biomass of viruses in each environment. 

Biomass estimate 

Main environments & resource Measured quantity Conversion to 

biomass 

Extrapolation method 

Marine Wigington et al. (268) Population density of 

phages [# virions mL-1] 

 

Methods: direct counts 

Assuming a 

characteristic size 

of phages from 

Brum et al. (278) 

and a carbon 

content per phage 

size from Jover et 

al. (279) 

 

We bin the data to different depth bins, 

calculate the mean density of 

individuals in each bin and multiply the 

mean density by the total volume of 

water in the bin 

Soil Williamson (274) 

Parikka et al. (275) 

Population density of 

phages [# individuals g-1] 

 

Methods: various (meta-

analysis), detailed in 

(274, 275) 

We use an average phage density from 

Williamson (274) and Parikka et al. 

(275) and extrapolate it across the entire 

volume of soil 

Marine 

subsurface 

Engelhardt et al. (269) Phage to prokaryotes ratio 

 

Methods: direct counts 

We use our estimate for the total 

number of marine prokaryotes and 

multiply it by the geometric mean of the 

phage to prokaryotes ratio from 

Engelhardt et al. 

Terrestrial 

subsurface 

Engelhardt et al. (269), 

Kyle et al. (270),  

Pan et al. (272), 

Roundnew et al. (273) 

Phage to prokaryotes ratio 

 

Methods: direct counts 

We use our estimate for the total 

number of marine prokaryotes and 

multiply it by the phage to prokaryotes 

ratio. We generate several estimates 

based on different assumptions and take 

the geometric mean of all of them. For 

more details see the relevant sections 

above 

Uncertainty 

Number of viruses – For each environment we calculate intra-study and interstudy uncertainty. We propagate the uncertainties in 

each environment to our total sum of the number of virions 

 

Size of phages – Intra-study uncertainty from Brum et al. (278). In line with measurements of phage size from terrestrial deep 

subsurface (280) 

 

Carbon content of phages – Uncertainty of estimate of the biophysical model in Jover et al. (279) 

Estimate of number of individuals 

Total number of individuals attained in the process of estimating total biomass 

https://paperpile.com/c/C72ZXm/GUN7
https://paperpile.com/c/C72ZXm/DwGs
https://paperpile.com/c/C72ZXm/dVU6
https://paperpile.com/c/C72ZXm/59Uc+5jrZ
https://paperpile.com/c/C72ZXm/59Uc+5jrZ
https://paperpile.com/c/C72ZXm/59Uc+5jrZ
https://paperpile.com/c/C72ZXm/59Uc+5jrZ
https://paperpile.com/c/C72ZXm/59Uc+5jrZ
https://paperpile.com/c/C72ZXm/xMYC
https://paperpile.com/c/C72ZXm/xMYC
https://paperpile.com/c/C72ZXm/LAIZ
https://paperpile.com/c/C72ZXm/dHPj
https://paperpile.com/c/C72ZXm/umNA
https://paperpile.com/c/C72ZXm/DwGs
https://paperpile.com/c/C72ZXm/0Zn5
https://paperpile.com/c/C72ZXm/dVU6
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Table S23. The global biomass concentrated in the terrestrial, marine or deep subsurface 

environments. 

The table details the taxa and considered for calculating the global biomass in the terrestrial, marine, and 

deep subsurface environments. 

Terrestrial Marine Deep subsurface 

Taxon Biomass 

[Gt C] 
Taxon Biomass 

[Gt C] 
Taxon Biomass 

[Gt C] 

Plants 450 Marine bacteria 1.3 Terrestrial deep 

subsurface bacteria 
60 

Soil fungi   12 Marine protists 2 Marine deep subsurface 

bacteria 
  7 

Soil bacteria     7 Marine 

arthropods 
1 Terrestrial deep 

subsurface archaea 
  4 

Terrestrial 

protists 
    1.6 Fish 0.7 Marine deep subsurface 

archaea 
  3 

Soil archaea     0.5 Marine fungi 0.3  

Terrestrial 

arthropods 
    0.2 Marine archaea 0.3 

Annelids     0.2 Marine molluscs 0.2 

Livestock     0.1 Cnidaria 0.1 

Humans     0.06 Marine 

nematodes 
0.01 

Wild 

mammals 
    0.007  

Terrestrial 

nematodes 
    0.006 

Wild birds     0.002 

Sum 470 Sum 6 Sum 70 

 


